分析 (1)求出函数的对数,解关于导函数的不等式,求出函数的极值即可;(2)根据函数的单调性,求出函数的最值即可.
解答 解:(1)f′(x)=$\frac{x-2}{{e}^{x}}$,
令f′(x)>0,解得:x>2,
令f′(x)<0,解得:x<2,
故f(x)在(-∞,2)递减,在(2,+∞)递增,
故f(x)的极小值是f(2)=-$\frac{1}{{e}^{2}}$;无极大值;
(2)由(1)f(x)在[-1,2)递减,在(2,+∞)递增,
而f(-1)=$\frac{2}{{e}^{-1}}$=2e>f(2)=-$\frac{1}{{e}^{2}}$,
故f(x)有最小值-$\frac{1}{{e}^{2}}$,无最大值.
点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{9\sqrt{2}}}{8}π$ | B. | $\frac{{9\sqrt{2}}}{4}π$ | C. | $2\sqrt{3}π$ | D. | $3\sqrt{2}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{8}{3}$ | C. | 3 | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com