精英家教网 > 高中数学 > 题目详情
20.已知tanx=2,则$\frac{cosx+2sinx}{cosx-sinx}$的值为-5.

分析 由条件利用同角三角函数的基本关系,求得所给式子的值.

解答 解:∵tanx=2,则$\frac{cosx+2sinx}{cosx-sinx}$=$\frac{1+2tanx}{1-tanx}$=$\frac{1+4}{1-2}$=-5,
故答案为:-5.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.计算log912-log32=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,若 f(a)=2,则实数a的值为ln2或-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为2,A,B为左右顶点,P为双曲线右支上一点,PA的斜率为k1,O为原点,PO斜率为k2,PB的斜率为k3,则m=k1k2k3.则m的取值范围为(-3$\sqrt{3}$,3$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列有关命题的说法错误的是(  )
A.命题“若x2-1=0,则x=1”的逆否命题为:“若x≠1则x2-1≠0”
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.若p∧q为假命题,则p、q均为假命题
D.对于命题p:?x∈R使得x2+x+1<0,则?p:?x∈R均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.【文】变量x,y满足条件$\left\{\begin{array}{l}x+2y-5≤0\\ x-y-2≤0\\ x≥0\end{array}\right.$则目标函数z=4x+3y+1的最大值为(  )
A.18B.16C.-5D.$\frac{16}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在等腰△ABC中,已知sinA:sinB=1:2,底边BC=10,则△ABC的周长是50; 面积是25$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-2x}$的单调区间为减区间为(1,+∞),增区间为(-∞,1],值域为(0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设奇函数y=f(x)的定义域为R,且满足f(x-2)=-f(x)对任意x∈R恒成立,当-1≤x≤1时,f(x)=x3.则下列三个命题:
①y=f(x)是以4为周期的周期函数;
②y=f(x)在[1,3]上的解析式为f(x)=(2-x)3
③x=1与x=-1,都是函数y=f(x)图象的对称轴.
其中正确的命题是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步练习册答案