精英家教网 > 高中数学 > 题目详情
9.函数f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-2x}$的单调区间为减区间为(1,+∞),增区间为(-∞,1],值域为(0,3].

分析 可以看出该函数是由$y=(\frac{1}{3})^{t}$和t=x2-2x复合而成的复合函数,从而求函数t=x2-x的单调区间即可得到原函数的单调区间.配方x2-2x=(x-1)2-1≥-1,然后根据指数函数的单调性即可求出f(x)的值域.

解答 解:令x2-2x=t,设y=f(x),则$y=(\frac{1}{3})^{t}$为减函数;
∴t=x2-2x的单调增减区间为原函数的单调减增区间;
∴原函数的单调减区间为(1,+∞),单调增区间为(-∞,1];
x2-2x=(x-1)2-1≥-1;
∴$0<(\frac{1}{3})^{{x}^{2}-2x}≤(\frac{1}{3})^{-1}=3$;
∴该函数的值域为(0,3].
故答案为:减区间为(1,+∞),增区间为(-∞,1],(0,3].

点评 考查复合函数的单调性,指数函数的单调性,以及二次函数单调区间的求法,配方求二次函数值域的方法,根据减函数的定义求函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.计算:
(1)3log72-log79+2log7($\frac{3}{2\sqrt{2}}$);
(2)(lg2)2+lg2•lg50+lg25;
(3)loga$\root{n}{a}$+loga$\frac{1}{{a}^{n}}$+loga$\frac{1}{\root{n}{a}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知tanx=2,则$\frac{cosx+2sinx}{cosx-sinx}$的值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={-2,-1,0,1,2},N={x|1<2x<8,x∈R},则M∩N=(  )
A.{-1,0,1}B.{0,1}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|log2x≥-2},$B=\{\left.x\right|{(\frac{1}{2})^{x-2}}≥\frac{1}{4}\}$
(Ⅰ)求A∩B;
(Ⅱ)求函数$f(x)={log_2}\frac{x}{2}•{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$(其中x∈A∩B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数y=$\frac{1}{2}$x2-2x+4的定义域和值域都是[b,2b],求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:cos40°cos80°-cos50°cos10°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a>0,且a≠0,m>m>0,比较A=am+$\frac{1}{{a}^{m}}$与B=a${\;}^{n}+\frac{1}{{a}^{n}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx-4与x轴交于点A(-2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.
(1)求抛物线的解析式;
(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒$\frac{3}{2}$个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.

查看答案和解析>>

同步练习册答案