精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方体ABCDA1B1C1D1棱长为4,点在棱上,点在棱上,且.在侧面内以为一个顶点作边长为1的正方形,侧面内动点满足到平面距离等于线段长的倍,则当点运动时,三棱锥的体积的最小值是( )

A. B. C. D.

【答案】B

【解析】

建立空间直角坐标系,求出P的轨迹方程,确定三棱锥AHPI的体积最小时,P的坐标,即可得出结论.

解:建立空间直角坐标系,如图所示

Px4z),则F143),N04z),且4x04z0

PNPF,∴2x12+2z32

化简得+z32P点轨迹为椭圆,

∴三棱锥AHPI的体积最小,P点处的切线平行于BI

A400),H001),I041),

(﹣401),(﹣441),

设平面AHI的法向量为xyz),则

104),

4)∴P到平面AHI的距离为

+z32

∴三棱锥AHPI的体积的最小值是

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在等腰直角中,,点在线段.

(Ⅰ) ,求的长;

)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力。某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果。例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人。

视觉

听觉

视觉记忆能力

偏低

中等

偏高

超常

听觉

记忆

能力

偏低

0

7

5

1

中等

1

8

3

b

偏高

2

a

0

1

超常

0

2

1

1

由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为

(1)试确定a,b的值;

(2)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为X,求随机变量X的分布列。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①若直线,那么直线必平行于平面内的无数条直线;②一个长为,宽为的矩形,其直观图的面积为;③若函数的定义域是,则的定义域是;④定义在上的函数,若,则函数的图象关于点中心对称.其中所有正确命题的编号为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, 边上,且,将沿折到的位置,使得平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的等比数列,且a1a2=6,a1a2a3.

(1)求数列{an}的通项公式;

(2){bn}为各项非零的等差数列,其前n项和为Sn.已知S2n+1bnbn+1,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,平行四边形的周长为8,其对角线的端点.

(1)求动点的轨迹的方程;

(2)已知点,记直线与曲线的另一交点为,直线分别与直线交于点.证明:以线段为直径的圆恒过点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:关于的不等式无解;命题:指数函数是增函数.

(1)若命题为真命题,求的取值范围;

(2)若满足为假命题为真命题的实数取值范围是集合,集合,且,求实数的取值范围.

查看答案和解析>>

同步练习册答案