精英家教网 > 高中数学 > 题目详情

一块形状为直角三角形的铁皮,直角边长分别为40cm和60cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问:怎样剪,才能使剩下的残料最少?

当x=30时,S取得最小值为600,此时y=20

解析在直角三角形铁皮ABC中,剪出一个矩形CDEF。设CD=x,CF=y,则AF=40-y.
因为△AEF∽△ABC,所以
       所以 …………5分
剩下残料的面积:
……9分
所以,当x=30时,S取得最小值为600,此时y=20
故在直角三角形铁皮的两直角边中点处剪开时,剩下的残料最少,最少残料600cm2…12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
  已知:函数是定义在上的偶函数,当时,为实数).
  (1)当时,求的解析式;
  (2)若,试判断上的单调性,并证明你的结论;
  (3)是否存在,使得当有最大值1?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最大值和最小正周期;    
(2)设A,B,C为三个内角,若,,且C为锐角,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函数y=f(x)图像上两点,且线段P1P2中点P的横坐标为
(1)求证P的纵坐标为定值;   (4分)
(2)若数列{}的通项公式为=f()(m∈N,n=1,2,3,…,m),求数列{}的前m项和;    (5分)
(3)若m∈N时,不等式横成立,求实数a的取值范围。(3分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知集合是同时满足下列两个性质的函数组成的集合:
在其定义域上是单调增函数或单调减函数;
②在的定义域内存在区间,使得上的值域是
(1)判断函数是否属于集合?并说明理由.若是,则请求出区间
(2)若函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)设函数,求:
(1);(2);(3)函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知三次函数的导函数为实数。

(1)若曲线在点()处切线的斜率为12,求的值;
(2)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设函数是定义在上的减函数,并且满足
(1)求,,的值, (2)如果,求x的取值范围。

查看答案和解析>>

同步练习册答案