精英家教网 > 高中数学 > 题目详情

(本题满分10分)设函数,求:
(1);(2);(3)函数.

解:  (1)4;    (2)6;    (3) =

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
某旅游景区的观景台P位于高(山顶到山脚水平面M的垂直高度PO)为2km的山峰上,山脚下有一段位于水平线上笔直的公路AB,山坡面可近似地看作平面PAB,且△PAB为等腰三角形.山坡面与山脚所在水平面M所成的二面角为α(0°<α<90°),且sinα=.现从山脚的水平公路AB某处C0开始修建一条盘山公路,该公路的第一段、第二段、第三段…,第n-1段依次为C0C1,C1C2,C2C3,…,Cn-1Cn(如图所示),且C0C1,C1C2,C2C3,…,Cn-1Cn与AB所成的角均为β,其中0<β<90°,sinβ=.试问:

(1)每修建盘山公路多少米,垂直高度就能升高100米.若修建盘山公路至半山腰(高度为山高的一半),在半山腰的中心Q处修建上山缆车索道站,索道PQ依山而建(与山坡面平行,离坡面高度忽略不计),问盘山公路的长度和索道的长度各是多少?
(2)若修建xkm盘山公路,其造价为 a万元.修建索道的造价为2a万元/km.问修建盘山公路至多高时,再修建上山索道至观景台,总造价最少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一块形状为直角三角形的铁皮,直角边长分别为40cm和60cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问:怎样剪,才能使剩下的残料最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数
(1)当时,求曲线处的切线方程;
(2)设的两个极值点,的一个零点,且证明:存在实数按照某种顺序排列后构成等差数列,并求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数对任意非零实数恒有,且对任意.  
(Ⅰ)求的值;   
(Ⅱ)判断函数的奇偶性;
(Ⅲ)求方程的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分) 函数的定义域为(0,1](为实数).
(1)当时,求函数的值域,
(2)当时,求函数上的最小值,并求出函数取最小值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的奇函数,当 
(1)作出函数的图象
(2)求函数的表达式
(3)求满足方程的解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知函数,(1)求函数的定义域;(2)当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知为偶函数,曲线过点,且.
(Ⅰ)若曲线有斜率为0的切线,求实数的取值范围
(Ⅱ)若当时函数取得极大值,且方程有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案