精英家教网 > 高中数学 > 题目详情
7.已知2sinθ=1-cosθ,则tanθ=(  )
A.-$\frac{4}{3}$或0B.$\frac{4}{3}$或0C.-$\frac{4}{3}$D.$\frac{4}{3}$

分析 根据同角三角函数基本关系式,求解即可.

解答 解:由2sinθ=1-cosθ,sin2θ=1-cos2θ,
解得:cosθ=1或$-\frac{3}{5}$
当cosθ=1时,sinθ=0,
当cosθ=$-\frac{3}{5}$时,sinθ=$\frac{4}{5}$,
∴tanθ=$-\frac{4}{3}$或0.
故选A

点评 本题考查了“弦与切”及同角三同角三角函数基本关系式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在Rt△ABC中,A=90°,AB=1,AC=2,D是斜边BC上一点,且BD=2DC,则$\overrightarrow{AD}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合 A={x|x2<4},B={0,1,2,3},则A∩B=(  )
A.B.{0}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f′(x)、g′(x)分别是函数f(x)、g(x)(x∈R)的导数,且满足g(x)>0,f′(x)g(x)-f(x)g′(x)>0.若△ABC中,∠C是钝角,则(  )
A.f(sinA)•g(sinB)>f(sinB)•g(sinA)B.f(sinA)•g(sinB)<f(sinB)•g(sinA)
C.f(cosA)•g(sinB)>f(sinB)•g(cosA)D.f(cosA)•g(sinB)<f(sinB)•g(cosA)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数z1,z2在复平面内的对应点关于虚轴对称,若z1=1-2i,i是虚数单位,则$\frac{{z}_{2}}{{z}_{1}}$的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒DNA来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒DNA,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒DNA,则在另外一组中逐个进行化验.
(1)求依据方案乙所需化验恰好为2次的概率.
(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要化验费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两个平面向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=1,|{\overrightarrow a-2\overrightarrow b}|=\sqrt{21}$,且$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则$|{\overrightarrow b}|$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ2(3+sin2θ)=12,曲线C2的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数,$α∈(0,\frac{π}{2})$).
(1)求曲线C1的直角坐标方程,并判断该曲线是什么曲线;
(2)设曲线C2与曲线C1的交点为A,B,P(1,0),当$|PA|+|PB|=\frac{7}{2}$时,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现有4名同学去参加校学生会活动,共有甲、乙两类活动可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪类活动,掷出点数为1或2的人去参加甲类活动,掷出点数大于2的人去参加乙类活动.
(1)求这4个人中恰有2人去参加甲类活动的概率;
(2)用X,Y分别表示这4个人中去参加甲、乙两类活动的人数.记ξ=|X-Y|,求随机变量ξ的分布列与数学期望E(ξ).

查看答案和解析>>

同步练习册答案