精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)已知为自然对数的底数,求函数处的切线方程;

(2)当时,方程有唯一实数根,求的取值范围.

【答案】(1) (2)

【解析】

(1)求得函数的导数,得到,利用直线的点斜式方程,即可求解切线的方程;

(2)当时,方程,即,令,求得,令,分类讨论利用导数求得函数的单调性与最值,即可求解.

(1)由题意,函数,定义域

,所以

函数处的切线方程为,整理得

即函数处的切线方程

(2)当时,方程,即

,有

因为,所以单调递减,

①当时, ,即单调递减,所以,方程无实根.

②当时,即 时,存在,使得时,,即单调递增; 时,,即单调递减; 因此

,则

,则,所以,即时单调递减,

所以

故存在

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数(),数据统计如下:

空气质量指数()

0-50

51-100

101-150

151-200

201-250

空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

20

40

10

5

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;

(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点且与轴相切,点关于圆心的对称点为,点的轨迹为.

1)求曲线的方程;

2)一条直线经过点,且交曲线两点,点为直线上的动点.

①求证:不可能是钝角;

②是否存在这样的点,使得是正三角形?若存在,求点的坐标:否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的五面体中,平面平面, ,,,

(Ⅰ)求四棱锥的体积;

(Ⅱ)求证:∥平面

(Ⅲ)设点为线段上的动点,求证:不垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求函数的单调区间;

(Ⅱ)若上恒成立,求正数的取值范围;

(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lx+y-6=0,过直线上一点P作圆x2+y2=4的切线,切点分别为AB,则四边形PAOB面积的最小值为______,此时四边形PAOB外接圆的方程为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两个焦点为在双曲线C.

1)求双曲线C的方程;

2)已知Q(0,2),P为双曲线C上的动点,M满足求动点M的轨迹方程;

3)过点Q(0,2)的直线与双曲线C相交于不同的两点EF,若求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于由有限个自然数组成的集合A,定义集合S(A)={a+b|a∈A,b∈A},记集合S(A)的元素个数为d(S(A)).定义变换T,变换T将集合A变换为集合T(A)=A∪S(A).

(1)若A={0,1,2},求S(A),T(A);

(2)若集合A有n个元素,证明:“d(S(A))=2n-1”的充要条件是“集合A中的所有元素能组成公差不为0的等差数列”;

(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素个数最少的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆长轴是短轴的倍,且右焦点为.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)直线交椭圆两点,若线段中点的横坐标为,求直线的方程及的面积.

查看答案和解析>>

同步练习册答案