精英家教网 > 高中数学 > 题目详情
3.已知等比数列{an}中,an=2×3n-1,则由此数列的偶数项所组成的新数列的前n项和Sn的值为(  )
A.3n-1B.3(3n-1)C.$\frac{{{9^n}-1}}{4}$D.$\frac{{3({9^n}-1)}}{4}$

分析 求出等比数列{an}中的第二项和第四项,求得新数列的公比,由等比数列的求和公式,即可得到所求.

解答 解:等比数列{an}中,an=2×3n-1
即有a2=6,a4=54,
则新数列的公比为9,
即有Sn=$\frac{6(1-{9}^{n})}{1-9}$
=$\frac{3({9}^{n}-1)}{4}$.
故选:D.

点评 本题考查等比数列的求和公式的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a、b、c分别为角A、B、C的对边,∠A=60°,$\frac{b}{c}$=$\frac{8}{5}$,其内切圆半径r=2$\sqrt{3}$,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a${\;}^{\frac{2}{3}}$+b${\;}^{\frac{2}{3}}$=4,x=a+3a${\;}^{\frac{1}{3}}$b${\;}^{\frac{2}{3}}$,y=b+3a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{3}}$,求(x+y)${\;}^{\frac{2}{3}}$+(x-y)${\;}^{\frac{2}{3}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:[$\frac{1}{4}$(0.027${\;}^{\frac{2}{3}}$+50×0.0016${\;}^{\frac{3}{4}}$)]${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.七人排成两排,前排3人,后排4人,若甲必须在前排,乙必须在后排,有1440种不同排法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sin(2x-$\frac{π}{3}$)+$\frac{1}{2}$,x∈R
(Ⅰ)求函数y=f(x)的最大值及它的单调递增区间
(Ⅱ)将函数y=f(x)的图象向下平移$\frac{1}{2}$个单位,再向左平移$\frac{π}{3}$个单位得到函数y=g(x)的图象,若函数y=g(x)在x∈[0,$\frac{5π}{6}$]上的图象与直线y=m恰有两个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若数列{an}的前n项和Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$,试判断{an}是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若a≥1,试比较M=$\sqrt{a+1}$-$\sqrt{a}$和N=$\sqrt{a}$-$\sqrt{a-1}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设集合A的元素为实数,且满足①1∉A;②若a∈A,则$\frac{1}{1-a}$∈A.
(1)若2∈A,试求集合A;
(2)若a∈A,试求集合A;
(3)集合A能否为单元素集合?若能,求出该集合;若不能,请说明理由.

查看答案和解析>>

同步练习册答案