精英家教网 > 高中数学 > 题目详情
我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,己知F1,F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°,则这 一对相关曲线中椭圆的离心率是
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设F1P=m,F2P=n,F1F2=2c,由余弦定理4c2=m2+n2-mn,设a1是椭圆的长半轴,a1是双曲线的实半轴,由椭圆及双曲线定义,得m+n=2a1,m-n=2a1,由此能求出结果.
解答: 解:设F1P=m,F2P=n,F1F2=2c,
由余弦定理得(2c)2=m2+n2-2mncos60°,
即4c2=m2+n2-mn,
设a1是椭圆的实半轴,a2是双曲线的实半轴,
由椭圆及双曲线定义,得m+n=2a1,m-n=2a2
∴m=a1+a2,n=a1-a2
将它们及离心率互为倒数关系代入前式得3a22-4c2+a12=0,
a1=3a2,e1•e2=
c
a1
c
a2
=
c
a1
3c
a1
=1

3e12=1
e1=
3
3

故答案为
3
3
点评:本题考查双曲线和椭圆的简单性质,解题时要认真审题,注意正确理解“相关曲线”的概念.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)和向量
b
=(1,f(x)),且
a
b

(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有f(A-
π
3
)=
3
,BC=
7
,sinB=
21
7
,求AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=
2x+1
x-1
,x≥0,且x≠1},集合B={x|y=lg[x2-(2a+1)x+a2+a],a∈R}.
(1)求集合A,B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=a-2i,z2=b+i,
.
z1
是z1的共轭复数.若
.
z1
•z2=-4,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
2
x与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两点,过点A作x轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过定点P(1,2)的直线在x轴、y轴的正半轴上的截距分别为a,b,则a+b的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,所有真命题的序号是
 

①?m∈R,使f(x)=(m-1)x m2-4m+3是幂函数;
②若函数f(x)满足f(x+1)=f(x-1),则函数f(x)周期为2;
③如果a>0且a≠1,那么logaf(x)=logag(x)的充要条件是af(x)=ag(x)
④命题“?x∈R,都有x2-3x-2≥0”的否定是“?x∈R,使得x2-3x-2≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,3)在圆x2+y2-2x-4y+m=0外,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}其前n项和为Sn,且Sn=n2+2n+2(n∈N*),则数列{an}的通项公式为
 

查看答案和解析>>

同步练习册答案