精英家教网 > 高中数学 > 题目详情
14.设i为虚数单位,则复数$z=\frac{2i}{1+i}$所对应的点位于第一象限.

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数$z=\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1+i)(1-i)}$=$\frac{2(i+1)}{2}$=1+i所对应的点(1,1)位于第一象限.
故答案为:一.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.2017年2月20日,摩拜单车在济南推出“做文明骑士,周一摩拜单车免费骑”活动,为了解单车使用情况,记者随机抽取了五个投放区域,统计了半小时内被骑走的单车数量,绘制了如图所示的茎叶图,则该组数据的方差为(  )
A.9B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=x2-mcosx+m2+3m-8有唯一零点,则满足条件的实数m组成的集合为{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间[-1,5]上随机取一个数x,若x满足|x|≤m的概率为$\frac{1}{2}$,则实数m为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)设g(x)=xf(x),h(x)=2ax2-(2a-1)x+a-1,若x≥1时,g(x)≤h(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{{ex-2{e^x}}}{{{e^{x+1}}}}$,g(x)=xlnx.
(Ⅰ)求函数g(x)在区间[2,4]上的最小值;
(Ⅱ)证明:对任意m,n∈(0,+∞),都有g(m)≥f(n)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥S-ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB=2,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别于BC,AD交于点P,Q,若|DQ|=λ|DA|
(1)当λ=$\frac{1}{2}$时,求证:平面SAE⊥平面MNPQ
(2)是否存在实数λ,使得三棱锥Q-BCN的体积为$\frac{7}{16}$?若存在,求出实数λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln(x+$\sqrt{a+{x}^{2}}$),是定义在R上的奇函数.
(Ⅰ)求a的值.
(Ⅱ)解不等式f(2x)≤f($\frac{6}{lo{g}_{2}(x+1)}$-4)≤ln(3+$\sqrt{10}$);
(Ⅲ)当x∈[1,2]时,不等式f(a•4x+a)+f(2x+1)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-3x2+1,g(x)=kx+1-lnx.
(1)若过点P(a,-4)恰有两条直线与曲线y=f(x)相切,求a的值;
(2)用min{p,q}表示p,q中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三个零点,求实数k的取值范围.

查看答案和解析>>

同步练习册答案