精英家教网 > 高中数学 > 题目详情
5.若函数f(x)=x2-mcosx+m2+3m-8有唯一零点,则满足条件的实数m组成的集合为{2}.

分析 由题意,唯一零点为0,则02-mcos0+m2+3m-8=0,即可得出结论.

解答 解:由题意,函数为偶函数,在x=0处有定义且存在唯一零点,所以唯一零点为0,则02-mcos0+m2+3m-8=0,
∴m=-4或2,
m=-4代回原式,令函数等于0分离得两个函数画图存在有多个零点,不符题意,仅m=2存在唯一零点.
故答案为{2}.

点评 本题考查函数的零点,考查学生的计算能力,确定唯一零点为0是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,若a3+a11=6,则其前13项的和S13的值是(  )
A.32B.39C.46D.78

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),过点F且垂直于x轴的直线在第一象限内与双曲线及双曲线的渐近线的交点依次为A、B,若2$\overrightarrow{OA}$=$\overrightarrow{OB}$+$\overrightarrow{OF}$,则该双曲线的离心率的值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知Sn为数列{an}的前n项和,且Sn=2an-λ(λ是非零常数).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=2an+(-1)nlog2an,当a1=1时,求数列{bn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:
不喜欢戏剧喜欢戏剧
男性青年观众4010
女性青年观众4060
现要在所有参与调查的人中用分层抽样的方法抽取n个人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n的值为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足 (n+1)bn=an+1-$\frac{Sn}{n}$,(n+2)cn=$\frac{{a}_{n+1}+{a}_{n+2}}{2}$-$\frac{{S}_{n}}{n}$,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知三棱锥P-ABC的四个顶点均在某球面上,PC为该球的直径,△ABC是边长为4的等边三角形,三棱椎P-ABC的体积为$\frac{16}{3}$,则该三棱锥的外接球的表面积为(  )
A.$\frac{16π}{3}$B.$\frac{40π}{3}$C.$\frac{64π}{3}$D.$\frac{80π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设i为虚数单位,则复数$z=\frac{2i}{1+i}$所对应的点位于第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos $\frac{α}{2}$=$\frac{\sqrt{6}}{2}$.
(1)求tan(α+$\frac{π}{4}$)的值;
(2)若sin(α-β)=-$\frac{3}{5}$,β∈($\frac{π}{2}$,π),求cos β的值.

查看答案和解析>>

同步练习册答案