精英家教网 > 高中数学 > 题目详情
16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),过点F且垂直于x轴的直线在第一象限内与双曲线及双曲线的渐近线的交点依次为A、B,若2$\overrightarrow{OA}$=$\overrightarrow{OB}$+$\overrightarrow{OF}$,则该双曲线的离心率的值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{2}$

分析 根据条件求出A,B的坐标,结合中点坐标公式建立a,c的关系进行求解即可.

解答 解:根据题意可求得A(c,$\frac{{b}^{2}}{a}$),B(c,$\frac{bc}{a}$),
∵2$\overrightarrow{OA}$=$\overrightarrow{OB}$+$\overrightarrow{OF}$,
∴A为BF的中点,∴2•$\frac{{b}^{2}}{a}$=$\frac{bc}{a}$,即c=2b,
∴双曲线C的离心率e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{\frac{{c}^{2}}{{{c}^{2}-b}^{2}}}$=$\frac{2\sqrt{3}}{3}$,
故选:A

点评 本题主要考查双曲线离心率的计算,根据直线和双曲线的相交关系求出交点坐标,结合中点坐标公式以及离心率的公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若平面α,β,γ中,α⊥β,则“γ⊥β”是“α∥γ”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{a(x-1)}{x+2}$.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1-lnx2)(x1+2x2)≤3(x1-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.2017年2月20日,摩拜单车在济南推出“做文明骑士,周一摩拜单车免费骑”活动,为了解单车使用情况,记者随机抽取了五个投放区域,统计了半小时内被骑走的单车数量,绘制了如图所示的茎叶图,则该组数据的方差为(  )
A.9B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,抛物线E:x2=4y的焦点是椭圆C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A,B分别是椭圆C的左、右顶点,直线y=k(x-4)(k≠0)与椭圆C交于不同的两点M,N,直线x=1与直线BM交于点P.
(i)证明:A,P,N三点共线;
(ii)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}是等比数列,其公比为2,设bn=log2an,且数列{bn}的前10项的和为25,那么$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{10}}$的值为$\frac{1023}{128}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=x2-mcosx+m2+3m-8有唯一零点,则满足条件的实数m组成的集合为{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥S-ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB=2,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别于BC,AD交于点P,Q,若|DQ|=λ|DA|
(1)当λ=$\frac{1}{2}$时,求证:平面SAE⊥平面MNPQ
(2)是否存在实数λ,使得三棱锥Q-BCN的体积为$\frac{7}{16}$?若存在,求出实数λ的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案