精英家教网 > 高中数学 > 题目详情
13.已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos $\frac{α}{2}$=$\frac{\sqrt{6}}{2}$.
(1)求tan(α+$\frac{π}{4}$)的值;
(2)若sin(α-β)=-$\frac{3}{5}$,β∈($\frac{π}{2}$,π),求cos β的值.

分析 (1)利用两边平方,可得sinα的值,利用同角三角函数关系式求解cosα,可得tanα.可求tan(α+$\frac{π}{4}$)的值;
(2)根据cosβ=cos[α-(α-β)]根据两角和与差的公式打开,可求cos β的值.

解答 解(1)∵sin$\frac{α}{2}$+cos $\frac{α}{2}$=$\frac{\sqrt{6}}{2}$.
∴1+sinα=$\frac{3}{2}$,即sinα=$\frac{1}{2}$
∵α∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{3}}{2}$.
∴tanα=$\frac{sinα}{cosα}=-\frac{\sqrt{3}}{3}$.
那么:tan(α+$\frac{π}{4}$)=$\frac{tanα+tan\frac{π}{4}}{1-tanα•tan\frac{π}{4}}=\frac{15-7\sqrt{3}}{13}$;
(2)∵sin α=$\frac{1}{2}$.又$\frac{π}{2}$<α<π,
∴cos α=-$\sqrt{1-sin2α}$=-$\frac{\sqrt{3}}{2}$.
∵$\frac{π}{2}$<α<π,$\frac{π}{2}$<β<π,
∴-$\frac{π}{2}$<α-β<$\frac{π}{2}$.
又sin(α-β)=-$\frac{3}{5}$,得cos(α-β)=$\frac{4}{5}$.
cos β=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=-$\frac{\sqrt{3}}{2}$×$\frac{4}{5}$+$\frac{1}{2}$×$\frac{3}{5}$=$-\frac{4\sqrt{3}-3}{10}$.

点评 本题主要考查了同角三角函数关系式和构造思想,构造cosβ=cos[α-(α-β)]利用两角和与差的公式打开求解是关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=x2-mcosx+m2+3m-8有唯一零点,则满足条件的实数m组成的集合为{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥S-ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB=2,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别于BC,AD交于点P,Q,若|DQ|=λ|DA|
(1)当λ=$\frac{1}{2}$时,求证:平面SAE⊥平面MNPQ
(2)是否存在实数λ,使得三棱锥Q-BCN的体积为$\frac{7}{16}$?若存在,求出实数λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln(x+$\sqrt{a+{x}^{2}}$),是定义在R上的奇函数.
(Ⅰ)求a的值.
(Ⅱ)解不等式f(2x)≤f($\frac{6}{lo{g}_{2}(x+1)}$-4)≤ln(3+$\sqrt{10}$);
(Ⅲ)当x∈[1,2]时,不等式f(a•4x+a)+f(2x+1)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.
(1)求证:AB⊥BC;
(2)若∠CAB=$\frac{π}{6}$,求三棱锥B1-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在矩形ABCD中,AB=4,BC=2,E为BC的中点,若F为该矩形内(含边界)任意一点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的最大值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某单位为制定节能减排的计划,随机统计了某4天的用电量y(单位:度)与当天气温x(单位:°C),并制作了对照表(如表),由表中数据,得线性回归方程$\hat y=-2x+a$,当某天的气温为-5°C时,预测当天的用电量约为(  )
x181310-1
y24343864
A.65度B.68度C.70度D.72度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-3x2+1,g(x)=kx+1-lnx.
(1)若过点P(a,-4)恰有两条直线与曲线y=f(x)相切,求a的值;
(2)用min{p,q}表示p,q中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.($\frac{x}{y}$-$\frac{y}{\sqrt{x}}$)8的展开式中x2的系数为70.(用数字作答)

查看答案和解析>>

同步练习册答案