精英家教网 > 高中数学 > 题目详情
8.如图所示,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.
(1)求证:AB⊥BC;
(2)若∠CAB=$\frac{π}{6}$,求三棱锥B1-A1BC的体积.

分析 (1)欲证AB⊥BC,而AB?侧面A1ABB1,可先证BC⊥侧面A1ABB1,过点A在平面A1ABB1内作AD⊥A1B于D,根据面面垂直的性质可知AD⊥平面A1BC,则AD⊥BC,又AA1⊥BC,AA1∩AD=A,满足定理所需条件;
(2)利用等体积方法,求三棱锥B1-A1BC的体积.

解答 (1)证明:如图,过点A在平面A1ABB1内作AD⊥A1B于D,
则由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,
得AD⊥平面A1BC.又BC?平面A1BC
所以AD⊥BC.
因为三棱柱ABC-A1B1C1是直三棱柱,
则AA1⊥底面ABC,所以AA1⊥BC.
又AA1∩AD=A,从而BC⊥侧面A1ABB1
又AB?侧面A1ABB1
故AB⊥BC.
(2)解:∵AB⊥BC,BB1⊥AB,BB1∩BC=B,
∴AB⊥平面BB1C,∴A1B1⊥平面BB1C,
∵∠CAB=$\frac{π}{6}$,
∴三棱锥B1-A1BC的体积=三棱锥A1-B1BC的体积=$\frac{1}{3}×\frac{1}{2}×2×\frac{2\sqrt{3}}{3}×2$=$\frac{4\sqrt{3}}{9}$.

点评 本题考查异面直线垂直的证明,考查三棱锥B1-A1BC的体积的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:
不喜欢戏剧喜欢戏剧
男性青年观众4010
女性青年观众4060
现要在所有参与调查的人中用分层抽样的方法抽取n个人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n的值为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一已知等差数列{an}中,其前n项和为Sn,若a3+a4+a5=42,则S7=(  )
A.98B.49C.14D.147

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系内任取一个点P(x,y)满足$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\end{array}\right.$,则点P落在曲线y=$\frac{1}{x}$与直线x=2,y=2围成的阴影区域(如图所示)内的概率为$\frac{3-ln4}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.当0<a<1时,在同一坐标系中,函数y=${(\frac{1}{a})^x}$与y=logax的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos $\frac{α}{2}$=$\frac{\sqrt{6}}{2}$.
(1)求tan(α+$\frac{π}{4}$)的值;
(2)若sin(α-β)=-$\frac{3}{5}$,β∈($\frac{π}{2}$,π),求cos β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,已知AB=8,AC=6,点O为三角形的外心,则$\overrightarrow{BC}•\overrightarrow{OA}$=14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在实数集R中,已知集合$A=\{x|x\sqrt{{x^2}-4}≥0\}$和集合B={x||x-1|+|x+1|≥2},则A∩B=(  )
A.{-2}∪[2,+∞)B.(-∞,-2)∪[2,+∞)C.[2,+∞)D.{0}∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“|x+1|+|x-2|≤5”是“-2≤x≤3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案