精英家教网 > 高中数学 > 题目详情
9.在四边形ABCD中,已知AB=9,BC=6,$\overrightarrow{CP}$=2$\overrightarrow{PD}$.
(1)若四边形ABCD是平行四边形,且$\overrightarrow{AP}$•$\overrightarrow{BP}$=18,求证:四边形ABCD是矩形;
(2)若$\overrightarrow{AB}$与$\overrightarrow{AD}$夹角的余弦值为$\frac{1}{3}$,且$\overrightarrow{AP}$•$\overrightarrow{BP}$∈[5,10],用反证法证明:四边形ABCD不可能是平行四边形.

分析 (1)把$\overrightarrow{AB}、\overrightarrow{AD}$看作基底,把且$\overrightarrow{AP}$、$\overrightarrow{BP}$用基底表示,代入且$\overrightarrow{AP}$•$\overrightarrow{BP}$=18可得$\overrightarrow{AB}•\overrightarrow{AD}=0$,从而证得答案;
(2)假设四边形ABCD不可能是平行四边形,由已知结合平面向量的数量积运算求得$\overrightarrow{AP}$•$\overrightarrow{BP}$的范围,与已知范围矛盾,说明假设错误.

解答 证明:(1)如图
AB=9,BC=6,$\overrightarrow{CP}$=2$\overrightarrow{PD}$,且四边形ABCD是平行四边形,
由$\overrightarrow{AP}$•$\overrightarrow{BP}$=18,得$(\overrightarrow{AD}+\overrightarrow{DP})•(\overrightarrow{BC}+\overrightarrow{CP})$=$(\overrightarrow{AD}+\frac{1}{3}\overrightarrow{AB})•(\overrightarrow{AD}-\frac{2}{3}\overrightarrow{AB})$=18,
即$|\overrightarrow{AD}{|}^{2}-\frac{1}{3}\overrightarrow{AB}•\overrightarrow{AD}-\frac{2}{9}|\overrightarrow{AB}{|}^{2}=18$,
∴36-$\frac{1}{3}\overrightarrow{AB}•\overrightarrow{AD}-18=18$,得$\overrightarrow{AB}•\overrightarrow{AD}=0$,
即AB⊥AD,
∴平行四边形ABCD是矩形;
(2)如图,
假设四边形ABCD是平行四边形,
由AB=9,BC=6,$\overrightarrow{CP}$=2$\overrightarrow{PD}$,四边形ABCD是平行四边形,且cos<$\overrightarrow{AB},\overrightarrow{AD}$>=$\frac{1}{3}$,
则$\overrightarrow{AP}$•$\overrightarrow{BP}$=$(\overrightarrow{AD}+\overrightarrow{DP})•(\overrightarrow{BC}+\overrightarrow{CP})$=$(\overrightarrow{AD}+\frac{1}{3}\overrightarrow{AB})•(\overrightarrow{AD}-\frac{2}{3}\overrightarrow{AB})$=$|\overrightarrow{AD}{|}^{2}-\frac{1}{3}|\overrightarrow{AB}||\overrightarrow{AD}|×\frac{1}{3}-\frac{2}{9}|\overrightarrow{AB}{|}^{2}$
=$36-\frac{1}{3}×\frac{1}{3}×9×6-\frac{2}{9}×81$=12.
与已知$\overrightarrow{AP}$•$\overrightarrow{BP}$∈[5,10]矛盾,
∴假设错误,
故四边形ABCD不可能是平行四边形.

点评 本题考查平面向量的数量积运算,考查了向量加法与减法的几何意义,训练了反证法证题的思想和步骤,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知点E(-λ,0)(λ≥0),动点A,B均在抛物线C:y2=2px(p>0)上,若$\overrightarrow{EA}$•$\overrightarrow{EB}$的最小值为0,则λ的值为(  )
A.$\frac{p}{2}$B.0C.pD.2p

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在三角形ABC中,如果(a+b+c)(b+c-a)=3bc,那么A等于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若cos($\frac{π}{6}$-α)=$\frac{1}{3}$,则cos($\frac{5π}{6}$+α)-cos($\frac{4π}{3}$-2α)=(  )
A.-$\frac{10}{9}$B.$\frac{10}{9}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.对于任意一个非零复数α,定义Ma={ω|ω=α2n-1,n∈N+}.
(1)若集合M中只有三个元素,试写出满足条件的一个α,并说明理由;
(2)设α是方程x+$\frac{1}{x}$=$\sqrt{2}$的一个根,试用列举法表示集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ)且$\overrightarrow{a}$,$\overrightarrow{b}$满足|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|(k>0),用k表示$\overrightarrow{a}$,$\overrightarrow{b}$的数量积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式(1-a)x2-4x+b>0的解集是{x|-3<x<1},则b=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴的两个相邻交点之间的距离等于$\frac{π}{2}$,若将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数y=g(x)的图象,则函数y=g(x)在区间[0,$\frac{π}{3}$]上的最大值为(  )
A.0B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义M{x,y}=$\left\{\begin{array}{l}{x,(x≥y)}\\{y,(x<y)}\end{array}\right.$,设a=x2+xy+x,b=4y2+xy+2y(x,y∈R),则M{a,b}的最小值为-$\frac{1}{6}$,当M取到最小值时,x=-$\frac{1}{3}$,y=-$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案