精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)={x^3}-\frac{1}{2}{x^2}+3x+a$(a为常数)
(1)证明函数f(x)在定义域上单调递增;
(2)若函数f(x)的图象在x=1处的切线方程为y=kx-1,求a.

分析 (1)求得函数f(x)的导数,配方即可得到f(x)的单调性;
(2)求得函数的导数,可得切线的斜率和切点,解方程可得k,a的值.

解答 解:(1)证明:函数$f(x)={x^3}-\frac{1}{2}{x^2}+3x+a$的导数为
f′(x)=3x2-x+3=3(x-$\frac{1}{6}$)2+$\frac{35}{12}$,
可得f′(x)>0恒成立,
即有函数f(x)在定义域上单调递增;
(2)由f′(x)=3x2-x+3,可得
函数f(x)的图象在x=1处的切线斜率为k=f′(1)=5,
切点为(1,a+$\frac{7}{2}$),即有a+$\frac{7}{2}$=5-1=4,
解得a=$\frac{1}{2}$.

点评 本题考查导数的运用:求切线的方程和判断单调性,考查化简整理的运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设x,y满足约束条件$\left\{\begin{array}{l}3x+y-2\;≤\;0\;\\ y-x\;≤\;2\;\\ y\;≥\;-x-1\;,\;\;\end{array}\right.$则z=y-2x的最大值(  )
A.$\frac{7}{2}$B.2C.3D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若2sinA+sinB=$\sqrt{3}$sinC,则角A的取值范围是(0,$\frac{π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,点O为BD的中点,E为PA的中点.
(1)求证:PO⊥OA;
(2)求证:OE∥平面PDC;
(3)求直线CB与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx.
(1)若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,求实数p的值;
(2)若函数g(x)=x-$\frac{m}{x}$-2f(x)(m∈R)有两个极值点x1,x2,且x1<x2
①求实数m的取值范围;
②证明:g(x2)<x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.当函数f(x)=$\frac{{e}^{x}}{x}$取到极值时,实数x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=x4-ax2-bx-1在x=1处有极值,则9a+3b的最小值为(  )
A.4B.9C.18D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3ax+{a}^{2}-3,(x<0)}\\{2{e}^{x}-(x-a)^{2}+3,(x>0)}\end{array}\right.$,a∈R.
(Ⅰ)若函数y=f(x)在x=1处取得极值,求a的值;
(Ⅱ)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围;
(Ⅲ)当x≥2时,记g(x)=f(x)+(x-a)2+(a-x)3-3+6ex,若g(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若ab<0且a+b=1,二项式(a+b)9按a的降幂排列,展开后其第二项不大于第三项,求a的取值范围.

查看答案和解析>>

同步练习册答案