精英家教网 > 高中数学 > 题目详情
16.已知抛物线C:y2=8x的焦点为F,过F的直线l与抛物线C交于M(x1,y1),N(x2,y2)两点,若|MN|=8,则(  )
A.x1+x2=8B.x1+x2=4C.y1+y2=8D.y1+y2=4

分析 根据抛物线方程可求得准线方程,进而根据抛物线的定义可知|MN|=x1+x2+p,求解即可.

解答 解:依题意可知p=4,
准线方程为x=-2,
根据抛物线的定义,
可知|MN|=x1+2+x2+2=8.
可得x1+x2=4.
故选:B.

点评 本题主要考查抛物线的应用.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,点$P(\sqrt{2},2)$在椭圆上.
(1)求椭圆C的方程;
(2)过椭圆上的焦点F作两条相互垂直的弦AC,BD,求|AC|+|BD|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(-4,x),$\overrightarrow{b}$=(1,2),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}满足a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$,n∈N,*
(1)求a2,a3
(2)证明:数列{an}为递增数列
(3)证明:$\frac{n}{2n+1}$≤an$≤\frac{2n-1}{2n+1}$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|cosθ}$+$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|cosθ}$=(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{5}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P为一动点,点A的坐标为(1,$\frac{3}{2}$),点B的坐标为(1,-$\frac{3}{2}$).两条不同的直线PA、PB与x轴交点的横坐标分别为m、n且满足mn=4,记动点P的轨迹及A,B两点组成曲线C,设过点(0,1)且斜率为k的直线l与曲线C交于不同的两点M,N,线段MN的中点为E点,直线OE与曲线C交于Q、R两点.
(1)求曲线C的方程;
(2)若|EM|•|EN|=λ|EQ|•|ER|,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,正四面体ABCD中,E、F分别是棱BC和AD的中点,则直线AE和CF所成的角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=|x2-2x-1|,若m>n>1,且f(m)=f(n),则mn的取值范围为(  )
A.$({3,3+2\sqrt{2}})$B.$({3,3+2\sqrt{2}}]$C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算$\frac{{{{sin}^2}15°}}{tan15°}$=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案