精英家教网 > 高中数学 > 题目详情
11.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|cosθ}$+$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|cosθ}$=(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{5}{4}$D.3

分析 根据|$\overrightarrow{a}$+$\overrightarrow{b}$|=3得出${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=9①,根据|$\overrightarrow{a}$-$\overrightarrow{b}$|=1得出${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=1②;由①②组成方程组,求出$\overrightarrow{a}$$•\overrightarrow{b}$和${\overrightarrow{a}}^{2}$+${\overrightarrow{b}}^{2}$的值,再求$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|cosθ}$+$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|cosθ}$的值.

解答 解:∵|$\overrightarrow{a}$+$\overrightarrow{b}$|=3,∴${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=9①;
又∵|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,∴${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=1②;
由①②组成方程组,解得:
$\overrightarrow{a}$$•\overrightarrow{b}$=2,${\overrightarrow{a}}^{2}$+${\overrightarrow{b}}^{2}$=5;
∴$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|cosθ}$+$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|cosθ}$=$\frac{{|\overrightarrow{a}|}^{2}}{|\overrightarrow{a}|×|\overrightarrow{b}|×cosθ}$+$\frac{{|\overrightarrow{b}|}^{2}}{|\overrightarrow{a}|×|\overrightarrow{b}|×cosθ}$
=$\frac{{\overrightarrow{a}}^{2}{+\overrightarrow{b}}^{2}}{\overrightarrow{a}•\overrightarrow{b}}$
=$\frac{5}{2}$.
故选:B.

点评 本题考查了平面向量的数量积与模长公式的应用问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.图1是源于其思想的一个程序框图,若输入的a,b分别为4,2,则输出的n等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+1)+ax2,a>0.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(-1,0)有唯一零点x0,证明:${e^{-2}}<{x_0}+1<{e^{-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某路公交车在6:30,7:00,7:30准时发车,小明同学在6:50至7:30之间到达该站乘车,且到达该站的时刻是随机的,则他等车时间不超过10分钟的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将圆C:(x-1)2+y2=25按向量$\overrightarrow{a}$=(1,1)平移得到圆C′,则圆C′的圆心和半径分别为(  )
A.(1,0),5B.(0,1),5C.(-1,0),5D.(2,1),5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线C:y2=8x的焦点为F,过F的直线l与抛物线C交于M(x1,y1),N(x2,y2)两点,若|MN|=8,则(  )
A.x1+x2=8B.x1+x2=4C.y1+y2=8D.y1+y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在三棱锥A-BCD中,E、F分别是AB,CD的中点,若AD=BC=2,AD与BC所成的角为θ,EF=$\sqrt{3}$,则sinθ=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{-(x+1)•{e}^{x},x≤a}\\{bx-1,x>a}\end{array}\right.$,若函数f(x)有最大值M,则M的取值范围是(  )
A.($-\frac{1}{2}-\frac{1}{2{e}^{2}}$,0)B.(0,$\frac{1}{{e}^{2}}$]C.(0,$\frac{1}{2}+\frac{1}{2{e}^{2}}$]D.($\frac{1}{2{e}^{2}}-\frac{1}{2}$,$\frac{1}{{e}^{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a=(1,-2)$,向量$\overrightarrow b=(3,x)$,若$\overrightarrow a⊥\overrightarrow b$,则实数x的值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案