精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\left\{\begin{array}{l}{-(x+1)•{e}^{x},x≤a}\\{bx-1,x>a}\end{array}\right.$,若函数f(x)有最大值M,则M的取值范围是(  )
A.($-\frac{1}{2}-\frac{1}{2{e}^{2}}$,0)B.(0,$\frac{1}{{e}^{2}}$]C.(0,$\frac{1}{2}+\frac{1}{2{e}^{2}}$]D.($\frac{1}{2{e}^{2}}-\frac{1}{2}$,$\frac{1}{{e}^{2}}$]

分析 判断f(x)在(-∞,a]上的单调性,讨论a与-2的大小关系即可求出M的范围.

解答 解:若f(x)有最大值,显然f(x)在(a,+∞)不单调递增,故b≤0,且ab-1≤f(a),
当x≤a时,f(x)=-(x+1)ex
∴f′(x)=-(x+2)ex
令f′(x)=-(x+2)ex=0,解得x=-2
∴当x<-2时,f′(x)>0,函数f(x)单调递增,
当x>-2时,f′(x)<0时,函数f(x)单调递减,
当x=-2时,f(x)取得最大值f(-2)=$\frac{1}{{e}^{2}}$,
∴当a≥-2时,f(x)max=$\frac{1}{{e}^{2}}$,
当a<-2时,f(x)max=f(a),
又x→-∞时,f(x)→0,
∴0<M≤$\frac{1}{{e}^{2}}$,
故选B.

点评 本题考查了函数的单调性判断与极值计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设Sn为等差数列{an}的前n项和,且a3=5,S6=42,则S9=117.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|cosθ}$+$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|cosθ}$=(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{5}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,正四面体ABCD中,E、F分别是棱BC和AD的中点,则直线AE和CF所成的角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知cos($\frac{π}{2}$+α)=-$\frac{2\sqrt{2}}{3}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),则sinα•cosα+cos2α=$\frac{-2\sqrt{2}-7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=|x2-2x-1|,若m>n>1,且f(m)=f(n),则mn的取值范围为(  )
A.$({3,3+2\sqrt{2}})$B.$({3,3+2\sqrt{2}}]$C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列{an}中,a2+a8-a12=0,a14-a4=2,记sn=a1+a2+…+an,则s15的值为(  )
A.30B.56C.68D.78

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,阴影部分的面积为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.$\frac{7}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,}&{x<1}\\{\frac{lnx}{x},}&{x≥1}\end{array}\right.$若方程f(x)=m恰有五个不相等的实数根,则实数m的取值范围为(0,$\frac{1}{e}$).

查看答案和解析>>

同步练习册答案