精英家教网 > 高中数学 > 题目详情
15.已知cos($\frac{π}{2}$+α)=-$\frac{2\sqrt{2}}{3}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),则sinα•cosα+cos2α=$\frac{-2\sqrt{2}-7}{9}$.

分析 利用诱导公式求得sinα的值,可得cosα的值,再利用二倍角的余弦公式求得要求式子的值.

解答 解:∵cos($\frac{π}{2}$+α)=-sinα=-$\frac{2\sqrt{2}}{3}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),
∴sinα=$\frac{2\sqrt{2}}{3}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{1}{3}$,
∴sinα•cosα+cos2α=sinα•cosα+2cos2α-1=$\frac{2\sqrt{2}}{3}$•(-$\frac{1}{3}$)+2•$\frac{1}{9}$-1=$\frac{-2\sqrt{2}-7}{9}$,
故答案为:$\frac{-2\sqrt{2}-7}{9}$.

点评 本题主要考查诱导公式、同角三角函数的基本关系、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知复数z=$\frac{a+i}{2i}$(其中i为虚数单位)的虚部与实部相等,则实数a的值为(  )
A.1B.$\frac{1}{2}$C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将圆C:(x-1)2+y2=25按向量$\overrightarrow{a}$=(1,1)平移得到圆C′,则圆C′的圆心和半径分别为(  )
A.(1,0),5B.(0,1),5C.(-1,0),5D.(2,1),5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在三棱锥A-BCD中,E、F分别是AB,CD的中点,若AD=BC=2,AD与BC所成的角为θ,EF=$\sqrt{3}$,则sinθ=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则f(5)=(  )
A.-1B.0C.1D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{-(x+1)•{e}^{x},x≤a}\\{bx-1,x>a}\end{array}\right.$,若函数f(x)有最大值M,则M的取值范围是(  )
A.($-\frac{1}{2}-\frac{1}{2{e}^{2}}$,0)B.(0,$\frac{1}{{e}^{2}}$]C.(0,$\frac{1}{2}+\frac{1}{2{e}^{2}}$]D.($\frac{1}{2{e}^{2}}-\frac{1}{2}$,$\frac{1}{{e}^{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$(x-\frac{1}{x}){(2x-1)^6}$的展开式中,x3的系数是-180.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆锥曲线C:$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.$(θ为参数)和定点$A(0,\frac{{\sqrt{3}}}{3})$,且F1,F2分别为圆锥曲线C的左右焦点.
(Ⅰ)求过点F2且垂直于直线AF1的直线l的参数方程;
(Ⅱ)在(Ⅰ)的条件下,直线l与曲线C相交于M,N两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)是定义在R上的奇函数,f(x)=g(x)+x2,且当x≥0时,g(x)=log2(x+1),则g(-1)=-3.

查看答案和解析>>

同步练习册答案