| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 取BD的中点G,连结EG、FG,则EG∥AD,FG∥BC,从而∠EGF是θ(或θ的补角),由此利用余弦定理能求出sinθ.
解答 解:如图,取BD的中点G,连结EG、FG,![]()
∵E、F分别是AB,CD的中点,
∴EG∥AD,FG∥BC,
∵AD=BC=2,AD与BC所成的角为θ,EF=$\sqrt{3}$,
∴∠EGF是θ(或θ的补角),
∴在△EFG中,EG=FG=1,EF=$\sqrt{3}$,
∴cos∠EGF=$\frac{E{G}^{2}+F{G}^{2}-E{F}^{2}}{2EG•FG}$=$\frac{1+1-3}{2}$=-$\frac{1}{2}$,
∴sinθ=$\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$.
故选:D.
点评 本题考查异面直线所成角的正弦值、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{5}{4}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 1或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 56 | C. | 68 | D. | 78 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com