精英家教网 > 高中数学 > 题目详情
3.已知$f(x)=\left\{\begin{array}{l}1+x,x∈R\\(1+i)x,x∉R\end{array}\right.$,则f[f(1-i)]等于(  )
A.3B.1C.2-iD.3+i

分析 根据f(x)中的范围带值计算即可.

解答 解:∵1-i∉R
∴f(1-i)=(1+i)(1-i)=2.
那么:f[f(1-i)]=f(2)=1+2=3.
故选A.

点评 本题考查了复数的基本运用.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.命题“?x∈R,使得x2<1”的否定是(  )
A.?x∈R,都有x2<1B.?x∈R,使得x2≥1
C.?x∈R,都有x≤-1或x≥1D.?x∈R,使得x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知三棱锥P-ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=2$\sqrt{3}$,则该球的表面积为(  )
A.B.16πC.32πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2|x+1|-|x-1|.
(Ⅰ)求函数f(x)的图象与直线y=1围成的封闭图形的面积m;
(Ⅱ)在(Ⅰ)的条件下,若(a,b)(a≠b)是函数g(x)=$\frac{m}{x}$图象上一点,求$\frac{{a}^{2}+{b}^{2}}{a-b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|=1$,则$|{2\overrightarrow a+\overrightarrow b}|$=(  )
A.3B.$\sqrt{3}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(2λsinx,sinx+cosx),$\overrightarrow{b}$=($\sqrt{3}$cosx,λ(sinx-cosx))(λ>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的最大值为2.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,cosA=$\frac{2b-a}{2c}$,若f(A)-m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|-x2-x+2<0},B={x|2x-5>0},则集合A与B的关系是(  )
A.B⊆AB.B?AC.B∈AD.A∈B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“a+b=1”是“直线x+y+1=0与圆(x-a)2+(y-b)2=2相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P,Q为动直线y=m(0<m<$\frac{{\sqrt{2}}}{2}$)与y=sinx和y=cosx在区间$[0,\frac{π}{2}]$上的左,右两个交点,P,Q在x轴上的投影分别为S,R.当矩形PQRS面积取得最大值时,点P的横坐标为x0,则(  )
A.${x_0}<\frac{π}{8}$B.${x_0}=\frac{π}{8}$C.$\frac{π}{8}<{x_0}<\frac{π}{6}$D.${x_0}>\frac{π}{6}$

查看答案和解析>>

同步练习册答案