精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|=1$,则$|{2\overrightarrow a+\overrightarrow b}|$=(  )
A.3B.$\sqrt{3}$C.7D.$\sqrt{7}$

分析 根据向量的数量积公式以及向量的模的计算即可.

解答 解:∵向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|=1$,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{b}$|2=2+2$\overrightarrow{a}$•$\overrightarrow{b}$=1,
∴2$\overrightarrow{a}$•$\overrightarrow{b}$=-1,
∴|2$\overrightarrow{a}$+$\overrightarrow{b}$|2=4|$\overrightarrow{a}$|2+4$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{b}$|2=4-2+1=3,
∴|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$,
故选:B

点评 本题考查了向量的数量积公式以及向量的模,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设Sn是等差数列{an}的前n项和,已知S3=6,a4=4.
(1)求数列{an}的通项公式;
(2)若bn=3${\;}^{{a}_{n+1}}$-3${\;}^{{a}_{n}}$,求证:$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=$\left\{\begin{array}{l}{\frac{1}{{2}^{x}}-1,x<1}\\{\frac{lnx}{{x}^{2}},x≥1}\end{array}\right.$,则函数y=|f(x)|-$\frac{1}{8}$的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-2|.
(1)求不等式f(x)+x2-4>0的解集;
(2)设g(x)=-|x+7|+3m,若关于x的不等式f(x)<g(x)的解集非空,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知四棱锥P-ABCD的顶点都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为(  )
A.$\frac{56π}{3}$B.$\frac{64π}{3}$C.24πD.$\frac{80π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$f(x)=\left\{\begin{array}{l}1+x,x∈R\\(1+i)x,x∉R\end{array}\right.$,则f[f(1-i)]等于(  )
A.3B.1C.2-iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$f(x)=\left\{\begin{array}{l}x+4,x≤-2或x≥3\\{x^2}-1,-2<x<3\end{array}\right.$,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是(  )
A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校开展“翻转合作学习法”教学实验,经过一年的实践后,对“翻转班”和“对照班”的全部220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的2×2列联表.
  成绩优秀 成绩一般 合计
 对照班 20 90 110
 翻转班 40 70 110
 合计 60 160 220
(Ⅰ)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;
(Ⅱ)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到一名“对照班”学生交流的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$:
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面α⊥平面β,α∩β=l,直线m?α,直线n?β,且m⊥n,有以下四个结论:
①若n∥l,则m⊥β
②若m⊥β,则n∥l
③m⊥β和n⊥α同时成立          
④m⊥β和n⊥α中至少有一个成立
其中正确的是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案