精英家教网 > 高中数学 > 题目详情
15.设集合A={x|-x2-x+2<0},B={x|2x-5>0},则集合A与B的关系是(  )
A.B⊆AB.B?AC.B∈AD.A∈B

分析 化解集合A,B,根据集合之间的关系判断即可.

解答 解:集合A={x|-x2-x+2<0}={x|x>1或x<-2},B={x|2x-5>0}={x|x>2.5}.
∴B⊆A,
故选A

点评 本题主要考查集合的基本运算,比较基础

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ax2-2(a+1)x+3(a∈R).
(1)若函数f(x)在$[{\frac{3}{2},3}]$单调递减,求实数a的取值范围;
(2)令h(x)=$\frac{f(x)}{x-1}$,若存在${x_1},{x_2}∈[{\frac{3}{2},3}]$,使得|h(x1)-h(x2)|≥$\frac{a+1}{2}$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-2|.
(1)求不等式f(x)+x2-4>0的解集;
(2)设g(x)=-|x+7|+3m,若关于x的不等式f(x)<g(x)的解集非空,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$f(x)=\left\{\begin{array}{l}1+x,x∈R\\(1+i)x,x∉R\end{array}\right.$,则f[f(1-i)]等于(  )
A.3B.1C.2-iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$f(x)=\left\{\begin{array}{l}x+4,x≤-2或x≥3\\{x^2}-1,-2<x<3\end{array}\right.$,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是(  )
A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,如果输入N=30,则输出S=(  )
A.26B.57C.225D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校开展“翻转合作学习法”教学实验,经过一年的实践后,对“翻转班”和“对照班”的全部220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的2×2列联表.
  成绩优秀 成绩一般 合计
 对照班 20 90 110
 翻转班 40 70 110
 合计 60 160 220
(Ⅰ)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;
(Ⅱ)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到一名“对照班”学生交流的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$:
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合S={1,2},设S的真子集有m个,则m=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为(  )
A.(1+$\frac{\sqrt{3}}{2}$)米B.2米C.(1+$\sqrt{3}$)米D.(2+$\sqrt{3}$)米

查看答案和解析>>

同步练习册答案