分析 (1)根据函数奇偶性的性质,即可求f(1),f(-2)的值;
(2)利用奇函数的对称性即可求f(x)在R上的表达式.
解答 解:(1)∵f(x)为奇函数,且当x>0,f(x)=x(1+$\root{3}{x}$).
∴f(1)=1+1=2,
f(-2)=-f(2)=-2×$(1+\root{3}{2})$=-2+2•$\root{3}{2}$;
(2)∵f(x)为奇函数,且当x>0,f(x)=x(1+$\root{3}{x}$).
∴f(0)=0,
当x<0,则-x>0,则f(-x)=-x(1-$\root{3}{x}$)=-f(x),
即f(x)=x(1-$\root{3}{x}$),
即f(x)在R上的表达式为f(x)=$\left\{\begin{array}{l}{x(1+\root{3}{x}),}&{x≥0}\\{x(1-\root{3}{x}),}&{x<0}\end{array}\right.$.
点评 本题主要考查函数解析式的求解以及函数值的计算,利用函数奇偶性的性质进行转化是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 线段DO | B. | 线段D1O | C. | 线段A1O | D. | 线段AO |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∠BAC=∠B′A′C′ | |
| B. | ∠BAC+∠B′A′C′=180° | |
| C. | ∠BAC=∠B′A′C′或∠BAC+∠B′A′C′=180° | |
| D. | ∠BAC>∠B′A′C′ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com