精英家教网 > 高中数学 > 题目详情
1..已知函数f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求f(x)的最大值及相应的x的取值集合.
(2)求f(x)的单调递增区间.

分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦函数的最值,求得f(x)的最大值及相应的x的取值集合.
(2)利用正弦函数的单调性,求得f(x)的单调递增区间.

解答 解:(1)∵$f(x)=2{cos^2}x+\sqrt{3}sin2x+1=2sin(2x+\frac{π}{6})+1$,
当2x+$\frac{π}{6}=\frac{π}{2}+2kπ(k∈z)$,即$x=kπ+\frac{π}{6}$时,f(x)取得最大值3.
∴f(x)的最大值为3,相应的x的取值集合为$\left\{{x\left|{x=\frac{π}{6}+kπ,k∈z}\right.}\right\}$.
(2)解不等式$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}$,(k∈z),求得$kπ-\frac{π}{3}≤x≤kπ+\frac{π}{6}(k∈Z)$,
∴f(x)的递增区间为$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$.

点评 本题主要考查三角恒等变换,正弦函数的最值以及单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知a∈R,若$\frac{1+ai}{2+i}$为实数,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α∈(0,π),方程x2sinα+y2cosα=1,试表述当α变化时方程所表示的曲线形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=cos(ωx+φ)(ω>0,$\frac{π}{2}$<φ<0)的最小周期为π,且f($\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.
(1)求函数y=f(x)解析式,并写出周期、振幅;
(2)求函数y=f(x)的单调递减区间;
(3)通过列表描点的方法,在给定坐标中作出函数f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将二进制数11101(2)转化为四进制数,正确的是(  )
A.120(4)B.131(4)C.200(4)D.202(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.江门对市民进行经济普查,在某小区共400户居民中,已购买电脑的家庭有358户,已购买私家车的有42户,两者都有的有34户,则该小区两者都没购买的家庭有(  )户.
A.0户B.34户C.42户D.358户

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果sinα>0,且cosα<0,则α是第二象限的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对等式sin(α+β)=sinα+sinβ的认识正确的是(  )
A.对于任意的角α、β都成立B.只对α、β取几个特殊值时成立
C.对于任意的角α、β都不成立D.有无限个α、β的值使等式成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+2sin2θ)=12,且曲线C的左焦点F在直线l上.
(I)求实数m和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,求$\frac{1}{|AF|}$+$\frac{1}{|BF|}$的值.

查看答案和解析>>

同步练习册答案