精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=cos(ωx+φ)(ω>0,$\frac{π}{2}$<φ<0)的最小周期为π,且f($\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.
(1)求函数y=f(x)解析式,并写出周期、振幅;
(2)求函数y=f(x)的单调递减区间;
(3)通过列表描点的方法,在给定坐标中作出函数f(x)在[0,π]上的图象.

分析 (1)根据函数的最小周期求出ω,f($\frac{π}{4}$)求出φ的值,写出f(x)的解析式、周期和振幅;
(2)根据余弦函数的图象与性质,即可得出y=f(x)的单调递减区间;
(3)利用列表描点法,作出函数f(x)在[0,π]上的图象即可.

解答 解:(1)函数f(x)=cos(ωx+φ)的最小周期为π,
∴T=$\frac{2π}{ω}$=π,∴ω=2;
又f($\frac{π}{4}$)=cos(2×$\frac{π}{4}$+φ)=-sinφ=$\frac{\sqrt{3}}{2}$,
∴sinφ=-$\frac{\sqrt{3}}{2}$;
又-$\frac{π}{2}$<φ<0,
∴φ=-$\frac{π}{3}$,
∴函数y=f(x)=cos(2x-$\frac{π}{3}$),且周期是kπ,k∈Z,振幅为1;
(2)∵函数y=f(x)=cos(2x-$\frac{π}{3}$),
令2kπ≤2x-$\frac{π}{3}$≤2kπ+π,k∈Z,
解得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,k∈Z,
∴函数y=f(x)的单调递减区间是
[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z;
(3)∵0≤x≤π,∴-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤$\frac{5π}{3}$;
则列表如下:

2x-$\frac{π}{3}$-$\frac{π}{3}$0$\frac{π}{2}$π$\frac{3π}{2}$$\frac{5π}{3}$
x0$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$π
y$\frac{1}{2}$10-10$\frac{1}{2}$
通过列表描点,作出函数f(x)在[0,π]上的图象如图所示:

点评 本题考查了余弦函数的图象与性质的应用问题,也考查了五点作图法的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列函数中为奇函数的是(  )
A.y=x2+cosxB.y=|sinx|C.y=x2sinxD.y=sin|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.半径为2的球的内接几何体的三视图如图,则其体积为(2+$\sqrt{3}$)π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,E,F,G,H分别是空间四边形ABCD四边的中点.
(1)证明:EH∥平面BCD;
(2)若AC与BD成30°的角,且AC=6,BD=4,求四边形EFGH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=$\frac{1}{2}$loga(a2x)•loga(ax)(2≤x≤4)的最大值是0,最小值是-$\frac{1}{8}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,P(2,0)是它一个顶点,直线l:y=k(x-1)与椭圆C交于不同的两点A.B.
(Ⅰ)求椭圆C的方程及焦点坐标;
(Ⅱ)若△PAB的面积为$\frac{\sqrt{10}}{3}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1..已知函数f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求f(x)的最大值及相应的x的取值集合.
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在四面体ABCD中,AB=CD=$\sqrt{10}$,AC=BD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,则四面体的外接球的表面积为(  )
A.6$\sqrt{3}$πB.8$\sqrt{3}$πC.14πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.我国是世界上严重缺水的国家,城市缺水尤为突出,某市为了制定合理的节水方案,从该市随机调查了100位居民,获得了他们某月的用水量,整理得到如图的频率分布直方图.
(1)求图中a的值并估计样本的众数;
(2)该市计划对居民生活用水试行阶梯水价,即每位居民月用水量不超过ω吨的按2元/吨收费,超过ω吨不超过2ω吨的部分按4元/吨收费,超过2ω吨的部分按照10元/吨收费.
①用样本估计总体,为使75%以上居民在该月的用水价格不超过4元/吨,ω至少定为多少?
②假设同组中的每个数据用该组区间的右端点值代替,当ω=2时,估计该市居民该月的人均水费.

查看答案和解析>>

同步练习册答案