精英家教网 > 高中数学 > 题目详情
17.如图,E,F,G,H分别是空间四边形ABCD四边的中点.
(1)证明:EH∥平面BCD;
(2)若AC与BD成30°的角,且AC=6,BD=4,求四边形EFGH的面积.

分析 (1)推导出 EH∥BD,FG∥BD,从而EH∥FG,由此能证明EH∥平面BCD.
(2)推导出EF∥AC∥HG,EH∥BD∥FG,EF=HG=3,EH=FG=2,∠EFG=30°,由此能求出四边形EFGH的面积.

解答 证明:(1)∵E,F,G,H分别是空间四边形ABCD四边的中点.
∴EH∥BD,FG∥BD,
∴EH∥FG,
∵EH?平面BCD,FG?平面BCD,
∴EH∥平面BCD.
解:(2)∵E,F,G,H分别是空间四边形ABCD四边的中点,
AC与BD成30°的角,且AC=6,BD=4,
∴EF∥AC∥HG,EH∥BD∥FG,
且EF=HG=$\frac{1}{2}AC$=3,EH=FG=$\frac{1}{2}$BD=2,
∴∠EFG=30°,
∴四边形EFGH的面积=EF•FG•sin30°=3×2×sin30°=3.

点评 本题考查线面平行的证明,考查四边形的面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.为了判断高中生的文理科选修是否与性别有关,随机调查了50名学生,得到如下2×2列联表:
理科文科
1410
620
能否在犯错误的概率不超过0.05的前提下认为选修文科与性别有关?
($P({K^2}≥3.841)≈0.05,P({K^2}≥5.024)≈0.025,{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在x轴上有一点P,它与点P1(4,1,2)之间的距离为$\sqrt{30}$,则点P的坐标是(9,0,0)或(-1,0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若不等式x2+ax+1≥0对于一切x∈[0,+∞)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α∈(0,π),方程x2sinα+y2cosα=1,试表述当α变化时方程所表示的曲线形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算:16${\;}^{\frac{1}{lo{g}_{6}4}}$+49${\;}^{\frac{1}{lo{g}_{8}7}}$=100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=cos(ωx+φ)(ω>0,$\frac{π}{2}$<φ<0)的最小周期为π,且f($\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.
(1)求函数y=f(x)解析式,并写出周期、振幅;
(2)求函数y=f(x)的单调递减区间;
(3)通过列表描点的方法,在给定坐标中作出函数f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.江门对市民进行经济普查,在某小区共400户居民中,已购买电脑的家庭有358户,已购买私家车的有42户,两者都有的有34户,则该小区两者都没购买的家庭有(  )户.
A.0户B.34户C.42户D.358户

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ=4cosθ,射线θ=φ,θ=φ+$\frac{π}{4}$,θ=φ-$\frac{π}{4}$与曲线C交于(不包括极点O)三点A,B,C.
(Ⅰ)求证:|OB|+|OC|=$\sqrt{2}$|OA|;
(Ⅱ)当φ=$\frac{π}{12}$时,求三角形△OBC的面积.

查看答案和解析>>

同步练习册答案