【题目】设关于x的一元二次方程,其中a,b是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.
(1)若随机数a,b∈{1,2,3,4,5,6};
(2)若a是从区间[0,5]中任取的一个数,b是从区间[2,4]中任取的一个数.
【答案】(1) (2)
【解析】
(1)设事件A为“方程x2+2ax+b2=0有实根”,当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b,利用列举法能求出事件A发生的概率为P(A).
(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤5,2≤b≤4}.构成事件A的区域为{(a,b)|0≤a≤5,2≤b≤4,a≥b},数形结合能求出所求的概率.
设事件A为方程有实根,
当,时,方程有实根的充要条件为.
基本事件共有36个:(1,1),(1,2),(1,3),(1,4)(1,5),(1,6),(2,1),(2,2),(2,3),(2,4)(2,5),(2,6),(3,1)(3,2),(3,3),(3,4),(3,5),(3,6),(4,1)(4,2)(4,3)(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4)(6,5),(6,6),其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含21个基本事件,
故事件A发生的概率为。
(2) 试验的全部结果所构成的区域为{(a,b)|0≤a≤5,2≤b≤4}.
构成事件A的区域为{(a,b)|0≤a≤5,2≤b≤4,a≥b},概率为两者的面积之比,
所以所求的概率为P(A)=。
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1﹣an=2,等比数列{bn}满足b1=a1 , b4=a4+1.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an+bn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共13分)
如图,正方形ABCD和四边形ACEF所在的平面互相垂直。
EF//AC,AB=,CE=EF=1
(Ⅰ)求证:AF//平面BDE;
(Ⅱ)求证:CF⊥平面BDF;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点, 是棱的中点, ,.
(1)求证:平面BDM; (2)D到面PBC距离;
(3)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若样本的平均数是,方差是,则对样本,下列结论正确的是 ( )
A. 平均数为14,方差为5 B. 平均数为13,方差为25
C. 平均数为13,方差为5 D. 平均数为14,方差为2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在钝角△ABC中,∠A为钝角,令 = , = ,若 =x +y (x,y∈R).现给出下面结论:
①当x= 时,点D是△ABC的重心;
②记△ABD,△ACD的面积分别为S△ABD , S△ACD , 当x= 时, ;
③若点D在△ABC内部(不含边界),则 的取值范围是 ;
④若 =λ ,其中点E在直线BC上,则当x=4,y=3时,λ=5.
其中正确的有(写出所有正确结论的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司对新招聘的员工张某进行综合能力测试,共设置了A,B,C三个测试项目.假定张某通过项目A的概率为 ,通过项目B,C的概率均为a(0<a<1),且这三个测试项目能否通过相互独立.
(1)用随机变量X表示张某在测试中通过的项目个数,求X的概率分布和数学期望E(X)(用a表示);
(2)若张某通过一个项目的概率最大,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com