·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥Êýt£¬ÄÜÇó³öÖ±ÏßlµÄÒ»°ã·½³Ì£¬ÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2£¬ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉÔ²ÐÄ£¨2£¬3£©µ½Ö±ÏßlµÄ¾àÀëd=r£¬µÃµ½Ö±ÏßlºÍÇúÏßCÏàÇУ®
£¨II£©ÇúÏßDΪx2+y2=1£®ÇúÏßD¾¹ýÉìËõ±ä»»$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$£¬µÃµ½ÇúÏßEµÄ·½³ÌΪ${x^2}+\frac{y^2}{4}=1$£¬´Ó¶øµãMµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦È\\ y=2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÓÉ´ËÄÜÇó³ö$\sqrt{3}x+\frac{1}{2}y$µÄȡֵ·¶Î§£®
½â´ð ½â£º£¨I£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£®
¡àÏûÈ¥Êýt£¬µÃÖ±ÏßlµÄÒ»°ã·½³ÌΪ$\sqrt{3}x+y-2\sqrt{3}-1=0$£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ2=4¦Ñcos¦È+6¦Ñsin¦È-12£¬
¡àÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2£¬
µÃÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-2£©2+£¨y-3£©2=1£®
¡ßÔ²ÐÄ£¨2£¬3£©µ½Ö±ÏßlµÄ¾àÀëd=$\frac{{|{2\sqrt{3}+3-2\sqrt{3}-1}|}}{{\sqrt{{{£¨{\sqrt{3}}£©}^2}+1}}}=1$=r£¬
¡àÖ±ÏßlºÍÇúÏßCÏàÇУ®
£¨II£©ÇúÏßDΪx2+y2=1£®
ÇúÏßD¾¹ýÉìËõ±ä»»$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$£¬µÃµ½ÇúÏßEµÄ·½³ÌΪ${x^2}+\frac{y^2}{4}=1$£¬
ÔòµãMµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦È\\ y=2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡à$\sqrt{3}x+\frac{1}{2}y=\sqrt{3}cos¦È+sin¦È=2sin£¨{¦È+\frac{¦Ð}{3}}£©$£¬
¡à$\sqrt{3}x+\frac{1}{2}y$µÄȡֵ·¶Î§Îª[-2£¬2]£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßµÄÒ»°ã·½³ÌºÍÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµµÄÅжϣ¬¿¼²é´úÊýʽµÄȡֵ·¶Î§µÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬$\frac{\sqrt{2}}{2}$] | B£® | [$\frac{\sqrt{2}}{2}$£¬+¡Þ] | C£® | £¨-¡Þ£¬-$\frac{\sqrt{2}}{2}$]£¬£¨0£¬$\frac{\sqrt{2}}{2}$£© | D£® | [-$\frac{\sqrt{2}}{2}$£¬0£©£¬£¨0£¬$\frac{\sqrt{2}}{2}$] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4¸ö | B£® | 3¸ö | C£® | 2¸ö | D£® | 1¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com