1£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ2=4¦Ñcos¦È+6¦Ñsin¦È-12£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£®
£¨I£©Ð´³öÖ±ÏßlµÄÒ»°ã·½³ÌÓëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢ÅжÏËüÃǵÄλÖùØÏµ£»
£¨II£©½«ÇúÏßCÏò×óÆ½ÒÆ2¸öµ¥Î»³¤¶È£¬ÏòÉÏÆ½ÒÆ3¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßD£¬ÉèÇúÏßD¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$µÃµ½ÇúÏßE£¬ÉèÇúÏßEÉÏÈÎÒ»µãΪM£¨x£¬y£©£¬Çó$\sqrt{3}x+\frac{1}{2}y$µÄȡֵ·¶Î§£®

·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥Êýt£¬ÄÜÇó³öÖ±ÏßlµÄÒ»°ã·½³Ì£¬ÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2£¬ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉÔ²ÐÄ£¨2£¬3£©µ½Ö±ÏßlµÄ¾àÀëd=r£¬µÃµ½Ö±ÏßlºÍÇúÏßCÏàÇУ®
£¨II£©ÇúÏßDΪx2+y2=1£®ÇúÏßD¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$£¬µÃµ½ÇúÏßEµÄ·½³ÌΪ${x^2}+\frac{y^2}{4}=1$£¬´Ó¶øµãMµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦È\\ y=2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÓÉ´ËÄÜÇó³ö$\sqrt{3}x+\frac{1}{2}y$µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨I£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£®
¡àÏûÈ¥Êýt£¬µÃÖ±ÏßlµÄÒ»°ã·½³ÌΪ$\sqrt{3}x+y-2\sqrt{3}-1=0$£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ2=4¦Ñcos¦È+6¦Ñsin¦È-12£¬
¡àÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2£¬
µÃÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-2£©2+£¨y-3£©2=1£®
¡ßÔ²ÐÄ£¨2£¬3£©µ½Ö±ÏßlµÄ¾àÀëd=$\frac{{|{2\sqrt{3}+3-2\sqrt{3}-1}|}}{{\sqrt{{{£¨{\sqrt{3}}£©}^2}+1}}}=1$=r£¬
¡àÖ±ÏßlºÍÇúÏßCÏàÇУ®
£¨II£©ÇúÏßDΪx2+y2=1£®
ÇúÏßD¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$£¬µÃµ½ÇúÏßEµÄ·½³ÌΪ${x^2}+\frac{y^2}{4}=1$£¬
ÔòµãMµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦È\\ y=2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡à$\sqrt{3}x+\frac{1}{2}y=\sqrt{3}cos¦È+sin¦È=2sin£¨{¦È+\frac{¦Ð}{3}}£©$£¬
¡à$\sqrt{3}x+\frac{1}{2}y$µÄȡֵ·¶Î§Îª[-2£¬2]£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßµÄÒ»°ã·½³ÌºÍÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµµÄÅжϣ¬¿¼²é´úÊýʽµÄȡֵ·¶Î§µÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®º¯Êýf£¨x£©=x2-ln£¨2x£©µÄµ¥µ÷ÔöÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨0£¬$\frac{\sqrt{2}}{2}$]B£®[$\frac{\sqrt{2}}{2}$£¬+¡Þ]C£®£¨-¡Þ£¬-$\frac{\sqrt{2}}{2}$]£¬£¨0£¬$\frac{\sqrt{2}}{2}$£©D£®[-$\frac{\sqrt{2}}{2}$£¬0£©£¬£¨0£¬$\frac{\sqrt{2}}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚ¼«×ø±êϵÖУ¬ÒÑÖªÔ²CµÄÔ²ÐÄC£¨3£¬$\frac{¦Ð}{9}$£©£¬°ë¾¶Îª1£®QµãÔÚÔ²ÖÜÉÏÔ˶¯£¬OΪ¼«µã£®
£¨1£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôPÔÚÖ±ÏßOQÉÏÔ˶¯£¬ÇÒÂú×ã$\frac{OQ}{QP}$=$\frac{2}{3}$£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®½«ÓÉÖ±Ïßy=x2ÓëÖ±Ïßx=1ÒÔ¼°xÖáΧ³ÉµÄ·â±ÕͼÐÎÈÆxÖáÐýתһÖÜÐγɵļ¸ºÎÌåµÄÌå»ýΪ$\frac{¦Ð}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³Ñ§Ð£ÊµÐÐ×ÔÖ÷ÕÐÉú£¬²Î¼Ó×ÔÖ÷ÕÐÉúµÄѧÉú´Ó8¸öÊÔÌâÖÐËæ»úÌôÑ¡³ö4¸ö½øÐÐ×÷´ð£¬ÖÁÉÙ´ð¶Ô3¸ö²ÅÄÜͨ¹ý³õÊÔ£®ÒÑÖª¼×¡¢ÒÒÁ½È˲μӳõÊÔ£¬ÔÚÕâ8¸öÊÔÌâÖм×ÄÜ´ð¶Ô6¸ö£¬ÒÒÄÜ´ð¶Ôÿ¸öÊÔÌâµÄ¸ÅÂÊΪ$\frac{3}{4}$£¬ÇҼס¢ÒÒÁ½ÈËÊÇ·ñ´ð¶Ôÿ¸öÊÔÌ⻥²»Ó°Ï죮
£¨¢ñ£©Çó¼×ͨ¹ý×ÔÖ÷ÕÐÉú³õÊԵĸÅÂÊ£»
£¨¢ò£©ÊÔͨ¹ý¸ÅÂʼÆË㣬·ÖÎö¼×¡¢ÒÒÁ½ÈË˭ͨ¹ý×ÔÖ÷ÕÐÉú³õÊԵĿÉÄÜÐÔ¸ü´ó£»
£¨¢ó£©¼Ç¼×´ð¶ÔÊÔÌâµÄ¸öÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÕýʵÊýx£¬yÂú×ã2x+y=1£¬ÔòxyµÄ×î´óֵΪ$\frac{1}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®É躯Êýy=f¡å£¨x£©ÊÇy=f¡ä£¨x£©µÄµ¼Êý£®Ä³Í¬Ñ§¾­¹ý̽¾¿·¢ÏÖ£¬ÈÎÒâÒ»¸öÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©¶¼ÓжԳÆÖÐÐÄ£¨x0£¬f£¨x0£©£©£¬ÆäÖÐx0Âú×ãf¡å£¨x0£©=0£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$£¬Ôòf£¨$\frac{1}{2017}$£©+f£¨$\frac{2}{2017}$£©+f£¨$\frac{3}{2017}$£©+¡­+f£¨$\frac{2016}{2017}$£©=2016£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉÏÇÒÖÜÆÚΪ2µÄÆæº¯Êý£¬µ±0£¼x£¼1ʱ£¬f£¨x£©=4x-1£¬Ôòf£¨0£©=0£¬f£¨$\frac{5}{2}$£©=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁÐËĸöÅжϣº
¢ÙijУ¸ßÈýÒ»°àºÍ¸ßÈý¶þ°àµÄÈËÊý·Ö±ðÊÇm£¬n£¬Ä³´Î²âÊÔÊýѧƽ¾ù·Ö·Ö±ðÊÇa£¬b£¬ÔòÕâÁ½¸ö°àµÄÊýѧƽ¾ù·ÖΪ$\frac{a+b}{2}$£»
¢Ú10Ãû¹¤ÈËijÌìÉú²úͬһÁã¼þµÄ¼þÊý·Ö±ðÊÇ15£¬17£¬14£¬10£¬15£¬17£¬17£¬16£¬14£¬12£¬ÉèÆäƽ¾ùÊýΪa£¬ÖÐλÊýΪb£¬ÖÚÊýΪc£¬ÔòÓÐc£¾a£¾b£»
¢Û´Ó×ÜÌåÖгéÈ¡µÄÑù±¾Îª$£¨{x_1}£¬y{_1}£©£¬£¨x{_2}£¬{y_2}£©£¬¡­£¬£¨{x_n}£¬{y_n}£©£¬Èô¼Ç\overline x=\frac{1}{n}\sum_{i=1}^n{{x_i}£¬\overline y=\frac{1}{n}}\sum_{i=1}^n{\;}{y_i}$£¬Ôò»Ø¹éÖ±Ïß$\widehaty=\widehatbx+\widehata$±Ø¹ýµã£¨$\overline x£¬\overline y$£©
¢ÜÒÑÖª¦Î·þ´ÓÕý̬·Ö²¼N£¨0£¬¦Ò2£©£¬ÇÒP£¨-2¡Ü¦Î¡Ü0£©=4£¬ÔòP£¨¦Î£¾2£©=0.2
ÆäÖÐÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸