精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=1,($\overrightarrow{a}-\overrightarrow{c}$)•($\overrightarrow{b}-\overrightarrow{c}$)=0,则|$\overrightarrow{a}-\overrightarrow{b}$|的取值范围为(  )
A.[$\sqrt{7}$-1,$\sqrt{7}$+1]B.($\sqrt{7}$-1,$\sqrt{7}$+1)C.[1,2]D.(1,2)

分析 利用向量的数量积运算性质和模的计算公式及不等式的性质即可得出

解答 解:∵向量$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=1,($\overrightarrow{a}-\overrightarrow{c}$)•($\overrightarrow{b}-\overrightarrow{c}$)=0,如图
∴设$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow{b}$,$\overrightarrow{OC}=\overrightarrow{c}$,则$\overrightarrow{CA}=\overrightarrow{a}-\overrightarrow{c}$,$\overrightarrow{CB}=\overrightarrow{b}-\overrightarrow{c}$,所以CA⊥CB,如图,OA=OB=2,取AB中点D,设CD=x,则AB=2x,
则OD⊥AB,AO2=DO2+AD2,所以DO=$\sqrt{4-{x}^{2}}$,根据CD-CO≤OD≤CO+CD,
∴1-x$≤\sqrt{4-{x}^{2}}≤$1+x,解得$\frac{\sqrt{7}-1}{2}≤x≤\frac{\sqrt{7}+1}{2}$,
∴$\overrightarrow{a}-\overrightarrow{b}$=2x∈[$\sqrt{7}-1,\sqrt{7}+1$].
故选A.

点评 本题考查了向量的运算;借助于三角形法则等是解答的关键;要熟练掌握数量积运算性质、模的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知命题p:双曲线$\frac{y^2}{5}-\frac{x^2}{m}$=1的离心率$e∈(\frac{{\sqrt{6}}}{2},\sqrt{2})$,命题q:方程$\frac{x^2}{2m}+\frac{y^2}{9-m}$=1表示焦点在x轴上的椭圆,若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的单位长度,已知直线I的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=2,点P关于极点对称的点P'QUOTE p?的极坐标为$(\sqrt{2},\frac{5π}{4})$(1)写出圆C的直角坐标方程及点P的极坐标;
(2)设直线I与圆C相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设X-B(10,0.8),则D(2X+1)等于(  )
A.1.6B.3.2C.6.4D.12.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|x≥0},且A∩B=B,则集合B可能是(  )
A.{x|x≤1}B.{1,2}C.{-1,0,1 }D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={ (x,y)|x,y为实数,且x2+y2=l},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=$\left\{\begin{array}{l}{|x-2|-2,|x|≥1}\\{\frac{1}{1+{x}^{2}},|x|<1}\end{array}\right.$,则f{[f($\frac{9}{2}$)]}=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,∠ABC=90°,以AB为直径的圆交AC于点E,过点E作圆O的切线交BC于点F.
(1)求证:BC=2EF;
(2)若CE=3OA,求∠EFB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3-$\frac{3}{2}$x2+1(x∈R),其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(3,f(3))处的切线方程;
(Ⅱ)若在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案