分析 (Ⅰ)利用导数求切线斜率即可;
(Ⅱ)在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上,f(x)>0恒成立?f(x)max>0恒成立,令f′(x)=0,解得x=0或x=$\frac{1}{a}$,以下分两种情况0<a≤2,a>2讨论,分类求出函数最大值即可.
解答 (Ⅰ)当a=1时,f(x)=x3-$\frac{3}{2}$x2+1,f(3)=$\frac{29}{2}$;
f′(x)=3x2-3x,f′(3)=18,
所以曲线y=f(x)在点(3,f(3))处的切线方程为y-$\frac{29}{2}$=18(x-3),即36x-2y-79=0.…(5分)
(Ⅱ)f′(x)=3ax2-3x=3x(ax-1),
令f′(x)=0,解得x=0或x=$\frac{1}{a}$,…(7分)
以下分两种情况讨论:
若0<a≤2,则$\frac{1}{a}≥\frac{1}{2}$:
当x∈(-$\frac{1}{2},0$)时,f′(x)>0,当x∈(0,$\frac{1}{2}$)时,f′(x)<0,∴f当x∈(-$\frac{1}{2},0$)时,f(x)递增,当x∈(0,$\frac{1}{2}$)时,f(x)递减,
当x∈[-$\frac{1}{2},\frac{1}{2}$]时,f(x)>0等价于$\left\{\begin{array}{l}{f(-\frac{1}{2})>0}\\{f(\frac{1}{2})>0}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{5-a}{8}>0}\\{\frac{5+a}{8}>0}\end{array}\right.$,
解不等式组得-5<a<5,因此0<a≤2;…(9分)
若a>2,则$0<\frac{1}{a}<\frac{1}{2}$,
当x变化时,f′(x),f(x)的变化情况如下表:
| x | (-$\frac{1}{2}$,0) | 0 | (0,$\frac{1}{a}$) | $\frac{1}{a}$ | ($\frac{1}{a}$,$\frac{1}{2}$) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
点评 本题考查了导数的综合应用,及恒成立问题转化为最值问题的处理,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [$\sqrt{7}$-1,$\sqrt{7}$+1] | B. | ($\sqrt{7}$-1,$\sqrt{7}$+1) | C. | [1,2] | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平行四边形 | B. | 菱形 | C. | 矩形 | D. | 正方形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com