精英家教网 > 高中数学 > 题目详情
20.已知直线x-y+1=0与曲线y=lnx+a相切,则a的值为-2.

分析 先设出切点坐标,根据导数的几何意义求出在切点处的导数,从而求出切点横坐标,再根据切点既在曲线y=lnx-a的图象上又在直线x-y+1=0上,即可求出a的值.

解答 解:设切点坐标为(m,n)
y'|x=m=$\frac{1}{m}$=1
解得,m=1
切点(1,n)在直线x-y+1=0上
∴n=2,
而切点(1,2)又在曲线y=lnx-a上
∴a=-2
故答案为-2.

点评 本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知集合A={ (x,y)|x,y为实数,且x2+y2=l},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{π}{2}$<α<π,3sin2α=2cosα,则cos(π-α)的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点O是锐角△ABC的外心,a,b,c分别为内角A、B、C的对边,A=$\frac{π}{4}$,且$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=λ$\overrightarrow{OA}$,则λ的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3-$\frac{3}{2}$x2+1(x∈R),其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(3,f(3))处的切线方程;
(Ⅱ)若在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等比数列{an}的前n项和Sn=$\frac{1}{2}$3n+1-a,则a等于(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|x≤1},P={x|x<t},若M∪P=P,则实数t应该满足的条件是(  )
A.t>1B.t≥1C.t<1D.t≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x与y之间的几组数据如表:
x 345 6
y2.5344.5
假设根据上表数据所得线性回归方程为$\widehat{y}$=$\widehat{b}$x+<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>a^$\widehat{a}$,根据中间两组数据(4,3)和(5,4)求得的直线方程为y=bx+a,则$\widehat{b}$<b,$\widehat{a}$>a.(填“>”或“<”)
附:回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案