精英家教网 > 高中数学 > 题目详情
5.等比数列{an}的前n项和Sn=$\frac{1}{2}$3n+1-a,则a等于(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 分别求出数列的前三项,利用等比数列的性质能求出结果.

解答 解:∵等比数列{an}的前n项和Sn=$\frac{1}{2}$3n+1-a,
∴${a}_{1}={S}_{1}=\frac{9}{2}-a$,
a2=S2-S1=($\frac{27}{2}-a$)-($\frac{9}{2}-a$)=9,
a3=S3-S2=($\frac{81}{2}-a$)-($\frac{27}{2}-a$)=27,
∵${{a}_{2}}^{2}={a}_{1}{a}_{3}$,
∴92=($\frac{9}{2}-a$)×27,
解得a=$\frac{3}{2}$.
故选:A.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}中,其前n项和Sn满足Sn=2an-2(n∈N*).
(1)求证:数列{an}为等比数列,并求{an}的通项公式;
(2)设bn=(n+1)•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合P={x∈N|1≤x<10},集合Q={x∈R|x2+x-6=0},则P∩Q=(  )
A.{2}B.{3}C.{-2,3}D..{-3,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是水平放置的△ABC按“斜二测画法”得到的直观图,其中B′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,那么△ABC的面积是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{2}}{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线x-y+1=0与曲线y=lnx+a相切,则a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在锐角△ABC中,sinA=$\frac{2\sqrt{6}}{5}$,cosC=$\frac{5}{7}$,BC=7,若动点P满足$\overrightarrow{AP}$=$\frac{λ}{2}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),则点P轨迹与直线AB,AC所围成的封闭区域的面积(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给定函数(1)y=$\frac{1}{{\sqrt{x}}}$;(2)y=$\frac{5x+2}{x-1}$;(3)y=-|2x+1|;(4)y=2x2+2x-$\frac{3}{2}$其中在区间(0,1)上单调递减的函数序号是(1),(2),(3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.集合A={-1,0,2},B={2,3,4},则A∩B={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,且椭圆C经过点$A(1,-\frac{{\sqrt{3}}}{2})$,直线l:y=x+m与椭圆C交于不同的两点A,B.
(1)求椭圆C的方程;
(2)若△AOB的面积为1(O为坐标原点),求直线l的方程.

查看答案和解析>>

同步练习册答案