精英家教网 > 高中数学 > 题目详情
10.已知集合A={ (x,y)|x,y为实数,且x2+y2=l},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为2.

分析 解不等式组求出元素的个数即可.

解答 解:由 $\left\{\begin{array}{l}{{x}^{2}{+y}^{2}=1}\\{y=x}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$,
∴A∩B的元素的个数是2个,
故答案为:2.

点评 本题考查了集合的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知曲线y=Asinωx+a(A>0,ω>0)在区间$[0,\frac{2π}{ω}]$上截直线y=2及y=-1所得的弦长相等且不为0,则a的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1的左右焦点分别为F1、F2,双曲线上的点P到F2的距离为12,则P到F1的距离为2或22 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:求$\underset{lim}{x→0}$$\frac{({∫}_{0}^{x}{e}^{{t}^{2}}dt)^{2}}{{∫}_{0}^{x}t{e}^{2{t}^{2}}dt}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=1,($\overrightarrow{a}-\overrightarrow{c}$)•($\overrightarrow{b}-\overrightarrow{c}$)=0,则|$\overrightarrow{a}-\overrightarrow{b}$|的取值范围为(  )
A.[$\sqrt{7}$-1,$\sqrt{7}$+1]B.($\sqrt{7}$-1,$\sqrt{7}$+1)C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}中,其前n项和Sn满足Sn=2an-2(n∈N*).
(1)求证:数列{an}为等比数列,并求{an}的通项公式;
(2)设bn=(n+1)•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,过椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一点P向x轴作垂线,垂足为左焦点F,A,B分别为E的右顶点,上顶点,且AB∥OP,|AF|=$\sqrt{2}$+1.
(1)求椭圆E的方程;
(2)过原点O做斜率为k(k>0)的直线,交E于C,D两点,求四边形ACBD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,则双曲线的离心率为$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线x-y+1=0与曲线y=lnx+a相切,则a的值为-2.

查看答案和解析>>

同步练习册答案