精英家教网 > 高中数学 > 题目详情
6.若两个等差数列{an}和{bn}的前n项和分别是Sn,Tn,已知$\frac{S_n}{T_n}$=$\frac{7n}{n+3}$,则$\frac{{{a_{10}}}}{{{b_9}+{b_{12}}}}$+$\frac{{{a_{11}}}}{{{b_8}+{b_{13}}}}$=$\frac{140}{23}$.

分析 由等差数列的性质,知$\frac{{{a_{10}}}}{{{b_9}+{b_{12}}}}$+$\frac{{{a_{11}}}}{{{b_8}+{b_{13}}}}$=$\frac{{a}_{10}+{a}_{11}}{{b}_{9}+{b}_{12}}$=$\frac{{a}_{10}+{a}_{11}}{{b}_{10}+{b}_{11}}$=$\frac{{S}_{20}}{{T}_{20}}$由此能够求出结果.

解答 解:∵数列{an}和{bn}都是等差数列,
∴$\frac{{{a_{10}}}}{{{b_9}+{b_{12}}}}$+$\frac{{{a_{11}}}}{{{b_8}+{b_{13}}}}$=$\frac{{a}_{10}+{a}_{11}}{{b}_{9}+{b}_{12}}$=$\frac{{a}_{10}+{a}_{11}}{{b}_{10}+{b}_{11}}$=$\frac{{S}_{20}}{{T}_{20}}$=$\frac{7×20}{20+3}$=$\frac{140}{23}$.
故答案是:$\frac{140}{23}$.

点评 本题考查等差数列的通项公式和前n项和公式的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的单位长度,已知直线I的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=2,点P关于极点对称的点P'QUOTE p?的极坐标为$(\sqrt{2},\frac{5π}{4})$(1)写出圆C的直角坐标方程及点P的极坐标;
(2)设直线I与圆C相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=$\left\{\begin{array}{l}{|x-2|-2,|x|≥1}\\{\frac{1}{1+{x}^{2}},|x|<1}\end{array}\right.$,则f{[f($\frac{9}{2}$)]}=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,∠ABC=90°,以AB为直径的圆交AC于点E,过点E作圆O的切线交BC于点F.
(1)求证:BC=2EF;
(2)若CE=3OA,求∠EFB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知一个三棱锥的俯视图与侧(左)视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边长为1的直角三角形,则该三棱锥的表面积为$4+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{π}{2}$<α<π,3sin2α=2cosα,则cos(π-α)的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α是第二象限角,设点P(x,$\sqrt{5}$)是α终边上一点,且cosα=$\frac{\sqrt{2}}{4}$x,则4cos(α+$\frac{π}{2}$)-3tan α=$\sqrt{15}$-$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3-$\frac{3}{2}$x2+1(x∈R),其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(3,f(3))处的切线方程;
(Ⅱ)若在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{-{x}^{2}-5x+6}$的定义域是[-6,1].

查看答案和解析>>

同步练习册答案