1£®ÒÔÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬÇÒÁ½¸ö×ø±êϵȡÏàͬµÄµ¥Î»³¤¶È£¬ÒÑÖªÖ±ÏßIµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬µãP¹ØÓÚ¼«µã¶Ô³ÆµÄµãP'QUOTE p?µÄ¼«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$£¨1£©Ð´³öÔ²CµÄÖ±½Ç×ø±ê·½³Ì¼°µãPµÄ¼«×ø±ê£»
£¨2£©ÉèÖ±ÏßIÓëÔ²CÏཻÓÚÁ½µãA¡¢B£¬ÇóµãPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ý£®

·ÖÎö £¨1£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯·½·¨Ð´³öÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»ÀûÓõãP¹ØÓÚ¼«µã¶Ô³ÆµÄµãP'µÄ¼«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$£¬µÃµ½µãPµÄ¼«×ø±ê£»
£¨2£©ÉèÖ±ÏßIÓëÔ²CÏཻÓÚÁ½µãA¡¢B£¬½«$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$´úÈëx2+y2=4£¬µÃ£º$|{t_1}{t_2}|=\frac{1}{2}$£¬¼´¿ÉÇóµãPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ý£®

½â´ð ½â£º£¨1£©Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬Ö±½Ç×ø±ê·½³ÌΪx2+y2=4£»
µãP¹ØÓÚ¼«µã¶Ô³ÆµÄµãP'µÄ¼«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$£¬ÔòP£¨$\sqrt{2}£¬\frac{¦Ð}{4}$£©£»
£¨2£©µãP»¯ÎªÖ±½Ç×ø±êΪP£¨1£¬1£©
½«$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$´úÈëx2+y2=4£¬µÃ£º$|{t_1}{t_2}|=\frac{1}{2}$£¬
ËùÒÔ£¬µãPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ý$\frac{1}{2}$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²é²ÎÊýµÄ¼¸ºÎÒâÒ壬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑ֪˫ÇúÏß$\frac{x^2}{9}-\frac{y^2}{m}$=1µÄÒ»Ìõ½¥½üÏß·½³ÌΪy=¡À$\frac{4}{3}$x£¬ÔòʵÊýmµÈÓÚ16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÃüÌâ¡°?x0¡Ê∁RQ£¬x03¡ÊQ¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x0∉∁RQ£¬x03¡ÊQB£®?x0¡Ê∁RQ£¬x03¡ÊQC£®?x∉∁RQ£¬x3¡ÊQD£®?x¡Ê∁RQ£¬x3∉Q

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔڵȲîÊýÁÐ{an}ÖУ¬SnΪËüµÄǰnÏîºÍ£¬Èôa1£¾0£¬S16£¾0£¬S17£¼0£¬Ôòµ±Sn×î´óʱ£¬nµÄֵΪ£¨¡¡¡¡£©
A£®7B£®8C£®9D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¡¶¾ÅÕÂËãÊõ¡·ÓÐÕâÑùÒ»¸öÎÊÌ⣺½ñÓÐÄÐ×ÓÉÆ×ߣ¬ÈÕÔöµÈÀ¾ÅÈÕ×ßһǧ¶þ°ÙÁùÊ®ÀµÚÒ»ÈÕ¡¢µÚËÄÈÕ¡¢µÚÆßÈÕËù×ßÖ®ºÍΪÈý°Ù¾ÅÊ®ÀÎʵÚÁùÈÕËù×ßʱÊýΪ150À

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ë«ÇúÏß$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬Ë«ÇúÏßÉϵĵãPµ½F2µÄ¾àÀëΪ12£¬ÔòPµ½F1µÄ¾àÀëΪ2»ò22 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ÒÑÖªÁùÀâ×¶P-ABCDEFµÄµ×ÃæÊÇÕýÁù±ßÐΣ¬PA¡ÍÆ½ÃæABC£¬PA=2AB£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÐòºÅÊǢܣ®
¢ÙPB¡ÍAD£»¢Ú¶þÃæ½ÇA-PB-CΪֱ¶þÃæ½Ç£» ¢ÛÖ±ÏßBC¡ÎÆ½ÃæPAE£»¢ÜÖ±ÏßPDÓëÆ½ÃæABCËù³ÉµÄ½ÇΪ45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªÏòÁ¿$\overrightarrow{a}£¬\overrightarrow{b}£¬\overrightarrow{c}$Âú×ã|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2£¬|$\overrightarrow{c}$|=1£¬£¨$\overrightarrow{a}-\overrightarrow{c}$£©•£¨$\overrightarrow{b}-\overrightarrow{c}$£©=0£¬Ôò|$\overrightarrow{a}-\overrightarrow{b}$|µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[$\sqrt{7}$-1£¬$\sqrt{7}$+1]B£®£¨$\sqrt{7}$-1£¬$\sqrt{7}$+1£©C£®[1£¬2]D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôÁ½¸öµÈ²îÊýÁÐ{an}ºÍ{bn}µÄǰnÏîºÍ·Ö±ðÊÇSn£¬Tn£¬ÒÑÖª$\frac{S_n}{T_n}$=$\frac{7n}{n+3}$£¬Ôò$\frac{{{a_{10}}}}{{{b_9}+{b_{12}}}}$+$\frac{{{a_{11}}}}{{{b_8}+{b_{13}}}}$=$\frac{140}{23}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸