精英家教网 > 高中数学 > 题目详情
9.在等差数列{an}中,Sn为它的前n项和,若a1>0,S16>0,S17<0,则当Sn最大时,n的值为(  )
A.7B.8C.9D.10

分析 根据所给的等差数列的S16>0且S17<0,根据等差数列的前n项和公式,看出第9项小于0,第8项和第9项的和大于0,得到第8项大于0,这样前8项的和最大.

解答 解:∵等差数列{an}中,S16>0且S17<0,
即S16=$\frac{16{(a}_{1}+{a}_{16})}{2}=8({a}_{8}+{a}_{9})>0$,
S17=$\frac{17({a}_{1}+{a}_{17})}{2}$=17a9<0,
∴a8+a9>0,a9<0,
∴a8>0,
∴数列的前8项和最大.
故答案为:8.

点评 本题考查等差数列的性质和前n项和,以及等差数列的性质,解题的关键是熟练运用等差数列的性质得出已知数列的项的正负.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}}$,的图象上存在不同的两点A,B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{4}$)B.(2,+∞)C.(-2,$\frac{1}{4}$)D.(-∞,2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:双曲线$\frac{y^2}{5}-\frac{x^2}{m}$=1的离心率$e∈(\frac{{\sqrt{6}}}{2},\sqrt{2})$,命题q:方程$\frac{x^2}{2m}+\frac{y^2}{9-m}$=1表示焦点在x轴上的椭圆,若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若抛物线y2=8x上有一点P,它到焦点的距离为20,则P点的横坐标为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,an+1=2an+3,数列{bn}中,b1=1,且点(bn+1,bn)在直线y=x-1上.
(Ⅰ) 求数列{an}的通项公式;     
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$f(x)=cos(3x+\frac{5π}{2})$,满足$\frac{f({x}_{i})}{{x}_{i}}=m$,其中${x}_{i}∈[-2π,2π],i=1,2,…,n,n∈{N}^{*}$,则n的最大值为(  )
A.13B.12C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的单位长度,已知直线I的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=2,点P关于极点对称的点P'QUOTE p?的极坐标为$(\sqrt{2},\frac{5π}{4})$(1)写出圆C的直角坐标方程及点P的极坐标;
(2)设直线I与圆C相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设X-B(10,0.8),则D(2X+1)等于(  )
A.1.6B.3.2C.6.4D.12.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,∠ABC=90°,以AB为直径的圆交AC于点E,过点E作圆O的切线交BC于点F.
(1)求证:BC=2EF;
(2)若CE=3OA,求∠EFB的大小.

查看答案和解析>>

同步练习册答案