精英家教网 > 高中数学 > 题目详情
17.若抛物线y2=8x上有一点P,它到焦点的距离为20,则P点的横坐标为18.

分析 由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|MF|=20,则M到准线的距离也为20,即可得|MF|=x+$\frac{p}{2}$=x+2=20,进而求出x.

解答 解:∵抛物线y2=8x=2px,
∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+$\frac{p}{2}$=x+2=20,
∴x=18,
故答案为:18.

点评 活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.《九章算术》中有一个“两鼠穿墙”问题:“今有垣(墙,读音)厚五尺,两鼠对穿,大鼠日(第一天)一尺,小鼠也日(第一天)一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天减半).问何日相逢,各穿几何?”
在两鼠“相逢”时,大鼠与小鼠“穿墙”的“进度”之比是59:26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD是一直角梯形,PA⊥底面ABCD,∠BAD=90°,AP⊥BC,AB=BC=1,AD=AP=2,E是PD的中点.
(1)求异面直线AE与CD所成角的大小;
(2)求直线BP与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知曲线y=Asinωx+a(A>0,ω>0)在区间$[0,\frac{2π}{ω}]$上截直线y=2及y=-1所得的弦长相等且不为0,则a的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“?x0∈∁RQ,x03∈Q”的否定是(  )
A.?x0∉∁RQ,x03∈QB.?x0∈∁RQ,x03∈QC.?x∉∁RQ,x3∈QD.?x∈∁RQ,x3∉Q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|,|$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,Sn为它的前n项和,若a1>0,S16>0,S17<0,则当Sn最大时,n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1的左右焦点分别为F1、F2,双曲线上的点P到F2的距离为12,则P到F1的距离为2或22 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,过椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一点P向x轴作垂线,垂足为左焦点F,A,B分别为E的右顶点,上顶点,且AB∥OP,|AF|=$\sqrt{2}$+1.
(1)求椭圆E的方程;
(2)过原点O做斜率为k(k>0)的直线,交E于C,D两点,求四边形ACBD面积S的最大值.

查看答案和解析>>

同步练习册答案