精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}}$,的图象上存在不同的两点A,B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{4}$)B.(2,+∞)C.(-2,$\frac{1}{4}$)D.(-∞,2)∪($\frac{1}{4}$,+∞)

分析 先根据导数的几何意义写出函数f(x)在点A、B处的切线方程,再利用两直线重合的充要条件:斜率相等且纵截距相等,列出关系式,从而得出a=$\frac{1}{4}$(t4-2t2-8t+1),可得出a的取值范围.

解答 解:当x<0时,f(x)=x2+x+a的导数为f′(x)=2x+1;
当x>0时,f(x)=-$\frac{1}{x}$的导数为f′(x)=$\frac{1}{{x}^{2}}$,
设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2
当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2
当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为
y-(x12+x1+a)=(2x1+1)(x-x1);
当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y+$\frac{1}{{x}_{2}}$=$\frac{1}{{{x}_{2}}^{2}}$(x-x2).
两直线重合的充要条件是$\frac{1}{{{x}_{2}}^{2}}$=2x1+1①,-$\frac{2}{{x}_{2}}$=-x12+a②,
由①及x1<0<x2得0<$\frac{1}{{x}_{2}}$<1,由①②令t=$\frac{1}{{x}_{2}}$,则0<t<1,且a=$\frac{1}{4}$(t4-2t2-8t+1)在(0,1)为减函数,
∴-2<a<$\frac{1}{4}$,
故选:C.

点评 本题主要考查了导数的几何意义等基础知识,考查了推理论证能力、运算能力、创新意识,考查了函数与方程、分类与整合、转化与化归等思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如果幂函数f(x)=xα的图象经过点(2,$\sqrt{2}$),则f(8)的值等于2$\sqrt{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆M:(x-3)2+(y-3)2=4,E,F分别为圆内接正△ABC的边AB,BC的中点,当△ABC绕圆心M转动时,则$\overrightarrow{ME}•\overrightarrow{OF}$(O为坐标原点)的取值范围是(  )
A.$[{-\frac{1}{2}-6\sqrt{2},-\frac{1}{2}+6\sqrt{2}}]$B.[-6,6]C.$[{-\frac{1}{2}-3\sqrt{2},-\frac{1}{2}+3\sqrt{2}}]$D.[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.《九章算术》中有一个“两鼠穿墙”问题:“今有垣(墙,读音)厚五尺,两鼠对穿,大鼠日(第一天)一尺,小鼠也日(第一天)一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天减半).问何日相逢,各穿几何?”
在两鼠“相逢”时,大鼠与小鼠“穿墙”的“进度”之比是59:26.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}的前两项均为1,前n项和为Sn,若{2nan}为等差数列,则Sn=$\frac{{2}^{n+1}-n-2}{{2}^{n-1}}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是某几何体的三视图,则该几何体的表面积为63.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{x^2}{9}-\frac{y^2}{m}$=1的一条渐近线方程为y=±$\frac{4}{3}$x,则实数m等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD是一直角梯形,PA⊥底面ABCD,∠BAD=90°,AP⊥BC,AB=BC=1,AD=AP=2,E是PD的中点.
(1)求异面直线AE与CD所成角的大小;
(2)求直线BP与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,Sn为它的前n项和,若a1>0,S16>0,S17<0,则当Sn最大时,n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案