精英家教网 > 高中数学 > 题目详情
5.y=cosx的图象相当于y=sinx的图象向左移动(  )
A.B.πC.$\frac{3π}{2}$D.$\frac{π}{2}$

分析 利用诱导公式cosx=sin(x+$\frac{π}{2}$)可得出答案.

解答 解:∵cosx=sin(x+$\frac{π}{2}$),
∴将y=sinx的图象向左平移$\frac{π}{2}$个单位得到y=cosx的图象.
故选:D.

点评 本题考查了函数图象的变换.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{b}$=(sinx,-$\sqrt{3}$cosx),设函数f(x)=sin(2x+$\frac{π}{3}$)+$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求函数f(x)的最小正周期T;
(2)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度,得到函数g(x)的图象,求g(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0).
(I)若f(x+θ)是最小正周期为2π的偶函数,求ω及θ的值;
(Ⅱ)若[-$\frac{5π}{3}$,$\frac{π}{3}$]是f(x)的一个递增区间,求ω的值.
(Ⅲ)在(Ⅱ)的条件下,若g(x)=f(-π-4x),求函数g(x)的单调增区间和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解关于x的不等式x2+ax-(a+1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别为a,b,c,若b=5,a=3,cos(B-A)=$\frac{7}{9}$,则△ABC的面积为5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对边分别为a,b,c,$\frac{sinA}{sinB+sinC}$=1-$\frac{a-b}{a-c}$.
(1)若b=$\sqrt{3}$,求△ABC周长的取值范围;
(2)设$\overrightarrow{m}$=(sinA,1),$\overrightarrow{n}$=(6cosB,cos2A),求$\overrightarrow{m}$•$\overrightarrow{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解关于x的不等式:ax2-(a+1)x+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的奇函数满足f(x+1)=-f(x),且在[0,1)上单调递增,记a=f($\frac{1}{2}$),b=f(2),c=f(3),则a,b,c的大小关系为(  )
A.a>b=cB.b>a=cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知${C}_{12}^{x-2}$=${C}_{12}^{2x-4}$,则x的值是2或6.

查看答案和解析>>

同步练习册答案