精英家教网 > 高中数学 > 题目详情
15.已知$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{b}$=(sinx,-$\sqrt{3}$cosx),设函数f(x)=sin(2x+$\frac{π}{3}$)+$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求函数f(x)的最小正周期T;
(2)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度,得到函数g(x)的图象,求g(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

分析 (1)由向量的坐标表示求得$\overrightarrow{a}$•$\overrightarrow{b}$,求得f(x)的解析式,即可求得最小正周期;
(2)根据三角函数图象变换,求得g(x)的解析式,x∈[-$\frac{π}{6}$,$\frac{π}{3}$]的值域.

解答 解:f(x)=sin(2x+$\frac{π}{3}$)+$\overrightarrow{a}$•$\overrightarrow{b}$,
=sin(2x+$\frac{π}{3}$)+$\sqrt{3}$sinx•sinx+cosx•(-$\sqrt{3}$cosx),
=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x-$\sqrt{3}$cos2x,
=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x
=sin(2x-$\frac{π}{3}$),
函数f(x)的最小正周期T,T=$\frac{2π}{ω}$=π;
(2)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度得:
g(x)=sin(2x-$\frac{2π}{3}$-$\frac{π}{3}$)=sin(2x-π)=-sin2x,
x∈[-$\frac{π}{6}$,$\frac{π}{3}$],2x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴由正弦函数图象可知:g(x)的值域为:[-1,$\frac{\sqrt{3}}{2}$].
∴g(x)的值域为:[-1,$\frac{\sqrt{3}}{2}$].

点评 本题考查向量的坐标表示、三角恒等变换及求正弦函数的值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列求导运算正确的是(  )
A.($\frac{1}{lnx}$)′=xB.(x•ex)′=ex+1C.(x2cosx)′=-2xsinxD.${({x-\frac{1}{x}})^′}=1+\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x,y的取值如表:
x01234
y11.33.25.68.9
若依据表中数据所画的散点图中,所有样本点(xi,yi)(i=1,2,3,4,5)都在曲线y=$\frac{1}{2}$x2+a附近波动,则a=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.($\frac{2}{x}$+x)(1-$\sqrt{x}$)4的展开式中x的系数是(  )
A.1B.2C.3D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα和cosα是方程5x2-x+m=0的两实根.求:
(1)m的值;
(2)当α∈(0,π)时,求$\frac{1}{tan(3π-α)}$的值;
(3)sin3α+cos3α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+3x.
(1)①求证:函数f(x)在区间(-1,1]上是单调增函数;
②当a在何范围内取值时,关于x的方程f(x)=a在x∈(-1,1]上有解?
(2)用二分法求方程f(x)=1在区间(-1,1)上的近似解.(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,xn满足f(-xi)=f(xi)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.
已知函数g(x)=$\left\{\begin{array}{l}{|sin(\frac{π}{2}x)|-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$是定义域为(-∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是($\frac{1}{4}$,$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在△ABC中,点D在边BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{\sqrt{2}}{10}$
(1)求sin∠C的值;
(2)若△ABD的面积为7,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.y=cosx的图象相当于y=sinx的图象向左移动(  )
A.B.πC.$\frac{3π}{2}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案