分析 (1)由同角三角函数基本关系式可求sin∠ADB,由∠C=∠ADB-$\frac{π}{4}$.利用两角差的正弦函数公式及特殊角的三角函数值即可求值得解.
(2)先由正弦定理求AD的值,再利用三角形面积公式求得BD,与余弦定理即可得解AB的长度.
解答 解:(1)在△ABC中,∵cos∠ADB=-$\frac{\sqrt{2}}{10}$,则sin∠ADB=$\frac{7\sqrt{2}}{10}$,
∠CAD=$\frac{π}{4}$,则∠C=∠ADB-$\frac{π}{4}$,
sin∠C=sin(∠ADB-$\frac{π}{4}$)=sin∠ADB•cos$\frac{π}{4}$-sin$\frac{π}{4}$cos∠ADB=$\frac{7\sqrt{2}}{10}•$$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{10}•\frac{\sqrt{2}}{2}$=$\frac{4}{5}$,
(2)在三角形△ACD中,$\frac{AD}{sin∠C}=\frac{AC}{sin∠ADC}$,
AD=$\frac{ACsin∠C}{sin∠ADC}$=$\frac{\frac{7}{2}•\frac{4}{5}}{\frac{7\sqrt{2}}{10}}$=2$\sqrt{2}$,
∴S=$\frac{1}{2}$AD•BD•sin∠ADB=$\frac{1}{2}$•2$\sqrt{2}$BD$\frac{7\sqrt{2}}{10}$=7,
∴BD=5,
由余弦定理可知:AB2=BD2+AD2-2BD•AD•cos∠ADB,
∴AB=$\sqrt{37}$.
点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式及特殊角的三角函数值,正弦定理,三角形面积公式等知识的综合应用,考查了数形结合能力和转化思想,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b=c | B. | b>a=c | C. | b>c>a | D. | a>c>b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com