精英家教网 > 高中数学 > 题目详情
4.如图,在△ABC中,点D在边BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{\sqrt{2}}{10}$
(1)求sin∠C的值;
(2)若△ABD的面积为7,求AB的长.

分析 (1)由同角三角函数基本关系式可求sin∠ADB,由∠C=∠ADB-$\frac{π}{4}$.利用两角差的正弦函数公式及特殊角的三角函数值即可求值得解.
(2)先由正弦定理求AD的值,再利用三角形面积公式求得BD,与余弦定理即可得解AB的长度.

解答 解:(1)在△ABC中,∵cos∠ADB=-$\frac{\sqrt{2}}{10}$,则sin∠ADB=$\frac{7\sqrt{2}}{10}$,
∠CAD=$\frac{π}{4}$,则∠C=∠ADB-$\frac{π}{4}$,
sin∠C=sin(∠ADB-$\frac{π}{4}$)=sin∠ADB•cos$\frac{π}{4}$-sin$\frac{π}{4}$cos∠ADB=$\frac{7\sqrt{2}}{10}•$$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{10}•\frac{\sqrt{2}}{2}$=$\frac{4}{5}$,
(2)在三角形△ACD中,$\frac{AD}{sin∠C}=\frac{AC}{sin∠ADC}$,
AD=$\frac{ACsin∠C}{sin∠ADC}$=$\frac{\frac{7}{2}•\frac{4}{5}}{\frac{7\sqrt{2}}{10}}$=2$\sqrt{2}$,
∴S=$\frac{1}{2}$AD•BD•sin∠ADB=$\frac{1}{2}$•2$\sqrt{2}$BD$\frac{7\sqrt{2}}{10}$=7,
∴BD=5,
由余弦定理可知:AB2=BD2+AD2-2BD•AD•cos∠ADB,
∴AB=$\sqrt{37}$.

点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式及特殊角的三角函数值,正弦定理,三角形面积公式等知识的综合应用,考查了数形结合能力和转化思想,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=$\frac{1}{4}$且an+1=$\frac{1}{2}{a_n}$.设bn+2=3${log_{\frac{1}{2}}}{a_n}({n∈{N_+}})$,数列{cn}满足cn=an•bn
(1)求数列{bn}通项公式;
(2)求数列{cn}的前n项和Sn
(3)若cn≤$\frac{1}{4}{m^2}$+m-1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{b}$=(sinx,-$\sqrt{3}$cosx),设函数f(x)=sin(2x+$\frac{π}{3}$)+$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求函数f(x)的最小正周期T;
(2)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度,得到函数g(x)的图象,求g(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:${A}_{5}^{2}$+cos$\frac{7π}{2}$-3log916+(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x>$\frac{5}{4}$,函数y=x+$\frac{1}{4x-5}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线l:y=-3x+b与圆C:(x-1)2+y2=1相交,则实数b的取值范围是(-2,8).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0).
(I)若f(x+θ)是最小正周期为2π的偶函数,求ω及θ的值;
(Ⅱ)若[-$\frac{5π}{3}$,$\frac{π}{3}$]是f(x)的一个递增区间,求ω的值.
(Ⅲ)在(Ⅱ)的条件下,若g(x)=f(-π-4x),求函数g(x)的单调增区间和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解关于x的不等式x2+ax-(a+1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的奇函数满足f(x+1)=-f(x),且在[0,1)上单调递增,记a=f($\frac{1}{2}$),b=f(2),c=f(3),则a,b,c的大小关系为(  )
A.a>b=cB.b>a=cC.b>c>aD.a>c>b

查看答案和解析>>

同步练习册答案