精英家教网 > 高中数学 > 题目详情
9.直线l:y=-3x+b与圆C:(x-1)2+y2=1相交,则实数b的取值范围是(-2,8).

分析 求出圆心坐标与半径,利用直线和圆相交的条件建立不等式关系进行求解即可.

解答 解:圆的标准方程为C:(x-1)2+y2=1,则圆心坐标为(1,0),半径r=1,
∵直线l:y=-3x+b与圆C:(x-1)2+y2=1相交,
∴圆心到直线的距离d=$\frac{|-3+b|}{\sqrt{9+1}}$<1,
即|b-3|<5,
则-5<b-3<5,
即-2<b<8,
故答案为:(-2,8).

点评 本题主要考查直线与圆的位置关系的应用,利用点到直线的距离与半径之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.(3x-1)7=a0+a1x+a2x2+…+a7x7,则|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|=47

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+3x.
(1)①求证:函数f(x)在区间(-1,1]上是单调增函数;
②当a在何范围内取值时,关于x的方程f(x)=a在x∈(-1,1]上有解?
(2)用二分法求方程f(x)=1在区间(-1,1)上的近似解.(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知当x∈(-$\frac{π}{6}$,π)时,不等式cos2x-2asinx+6a-1>0恒成立,则实数a的取值范围是a>$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在△ABC中,点D在边BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{\sqrt{2}}{10}$
(1)求sin∠C的值;
(2)若△ABD的面积为7,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{3{x}^{2}+ax+26}{x+1}$,若存在x∈N*使得f(x)≤2成立,则实数a的取值范围为(  )
A.[-15,+∞)B.(-∞,2-12$\sqrt{2}$]C.(-∞,-16]D.(-∞,-15]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,有一块半径为R的半圆形钢板,计划将其剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.
(1)试将该梯形的周长y表示成腰长x的函数;
(2)腰长为多少时,该梯形的周长最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了了解汽车在某一路段上的速度,交警对这段路上连续驶过的50辆汽车的速度(单位:km/h)进行了统计,得到的数据如下表所示:
速度区间[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)
车辆数1410151262
(1)试估计这段路上汽车行驶的平均速度;
(2)试估计在这段路上,汽车行驶速度的标准差.(注:为了计算方便,速度取每个区间的中点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC中,a+c=2b,3a+b=2c,求证:sinA:sinB:sinc=3:5:7.

查看答案和解析>>

同步练习册答案