精英家教网 > 高中数学 > 题目详情
19.(3x-1)7=a0+a1x+a2x2+…+a7x7,则|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|=47

分析 由题意可得|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|,即(3x+1)7展开式中各项系数和,令x=1,可得(3x+1)7展开式中各项系数和.

解答 解:∵(3x-1)7=a0+a1x+a2x2+…+a7x7
则|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|即(3x+1)7展开式中各项系数和,
令x=1,可得(3x+1)7展开式中各项系数和为47
故答案为:47

点评 本题主要考查二项式定理的应用,在二项展开式中,通过给变量赋值,求得某些项的系数和,是一种简单有效的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.计算:${∫}_{0}^{1}$x3dx=(  )
A.1B.0C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x2+bx+c是偶函数,则b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x+1)=$\frac{f(x)}{1+f(x)}$,且f(1)=1,则f(10)=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=$\frac{1}{4}$且an+1=$\frac{1}{2}{a_n}$.设bn+2=3${log_{\frac{1}{2}}}{a_n}({n∈{N_+}})$,数列{cn}满足cn=an•bn
(1)求数列{bn}通项公式;
(2)求数列{cn}的前n项和Sn
(3)若cn≤$\frac{1}{4}{m^2}$+m-1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$在同一平面内,且$\overrightarrow a=(-1,2)$.
(1)若$\overrightarrow c=(m-1,3m)$,且$\overrightarrow c∥\overrightarrow a$,求m的值;
(2)若|$\overrightarrow a-\overrightarrow b|=3$,且$(\overrightarrow a+2\overrightarrow b)⊥(2\overrightarrow a-\overrightarrow b)$,求向量$\overrightarrow a-\overrightarrow b$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在数列{an}中,an=2n2-3,则125是这个数列的第8项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,BC边上的高为$\frac{\sqrt{3}}{6}$BC,则$\frac{sinC}{sinB}$+$\frac{sinB}{sinC}$的最大值为(  )
A.4B.5C.6D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线l:y=-3x+b与圆C:(x-1)2+y2=1相交,则实数b的取值范围是(-2,8).

查看答案和解析>>

同步练习册答案