精英家教网 > 高中数学 > 题目详情
9.计算:${∫}_{0}^{1}$x3dx=(  )
A.1B.0C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 找出被积函数的原函数,利用微积分基本定理求值.

解答 解:原式=$\frac{1}{4}{x}^{4}{|}_{0}^{1}$=$\frac{1}{4}$;
故选D.

点评 本题考查了定积分的计算;运用微积分基本定理求值;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若$\frac{cos2α}{sin(α+\frac{π}{4})}$=$\frac{2\sqrt{5}}{5}$,且α∈($\frac{π}{4}$,$\frac{π}{2}$),则tan2α的值为-$\frac{3\sqrt{91}}{91}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A、B、C的对边分别为a、b、c,若2sinCcosB=2sinA+sinB,△ABC的面积为S=$\frac{\sqrt{3}}{12}$c,则ab的最小值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,f(x)=($\frac{1}{3}$)x-6.若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则实数a的取值范围是$({\root{3}{4},2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f($\frac{π}{6}$)|,对x∈R恒成立,且f($\frac{π}{2}$)>f(π).
(1)求函数f(x)的解析式;
(2)求函数f(x)在[0,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=x3-3ax+1在区间(0,1)内有极小值,则a的取值范围是(  )
A.(0,1)B.(0,1]C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=4,BC=2,则质点落在以AB为直径的半圆外的空白处的概率是(  )
A.1-$\frac{π}{4}$B.$\frac{π}{4}$C.1-$\frac{π}{2}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若锐角α、β满足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{3}{5}$,sinβ=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(3x-1)7=a0+a1x+a2x2+…+a7x7,则|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|=47

查看答案和解析>>

同步练习册答案