精英家教网 > 高中数学 > 题目详情
14.若函数f(x)=x3-3ax+1在区间(0,1)内有极小值,则a的取值范围是(  )
A.(0,1)B.(0,1]C.[0,1)D.[0,1]

分析 先求出函数的导数,结合题意得到函数的单调区间,从而求出a的范围.

解答 解:∵f′(x)=3x2-3a=3(x2-a),在区间(0,1)内有极小值,
令f′(x)>0,解得:1>x>$\sqrt{a}$,
令f′(x)<0,解得:0<x<$\sqrt{a}$,
∴函数f(x)在(0,$\sqrt{a}$)递减,在($\sqrt{a}$,1)递增,
∴f(x)极小值=f($\sqrt{a}$),
∵函数f(x)=x3-3ax+1在区间(0,1)内有极小值,
∴0<$\sqrt{a}$<1,
∴0<a<1,
故选:A.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列命题:①已知A、B、C是三角形ABC的内角,则A=B是sinA=sinB的充要条件;②设$\overrightarrow a$,$\overrightarrow b$为向量,如果|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$-$\overrightarrow b$|,则$\overrightarrow a⊥\overrightarrow b$;③设$\overrightarrow{a}$,$\overrightarrow{b}$为向量,则“$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$”是“$\overrightarrow a$∥$\overrightarrow b$”的充分不必要条件;④设$\overrightarrow{a}$,$\overrightarrow{b}$为向量,“$\overrightarrow{a}$=2$\overrightarrow{b}$”是“$\overrightarrow{a}$与$\overrightarrow b$共线”的充要条件,正确的是(  )
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知不等式ax2+bx+c>0的解集为$\left\{{x|-\frac{1}{3}<x<2}\right\}$,则不等式cx2+bx+a<0的解集为(  )
A.$\left\{{x|-3<x<\frac{1}{2}}\right\}$B.$\left\{{x|x<-3或x>\frac{1}{2}}\right\}$C.$\left\{{x|-2<x<\frac{1}{3}}\right\}$D.$\left\{{x|x<-2或x>\frac{1}{3}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=cosωx(ω>0)的图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,则ω的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$或$\frac{1}{2}$D.$\frac{2}{3}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.计算:${∫}_{0}^{1}$x3dx=(  )
A.1B.0C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}满足a3+a4=12,3a2=a5,则a5=(  )
A.3B.6C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.i是虚数单位,复数$\frac{7+i}{3+4i}$=(  )
A.$\frac{17}{25}$+$\frac{31}{25}$iB.-1+iC.1-iD.-$\frac{17}{7}$+$\frac{25}{7}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,(a0+a2+a4+a62-(a1+a3+a5+a72值为-2187.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$在同一平面内,且$\overrightarrow a=(-1,2)$.
(1)若$\overrightarrow c=(m-1,3m)$,且$\overrightarrow c∥\overrightarrow a$,求m的值;
(2)若|$\overrightarrow a-\overrightarrow b|=3$,且$(\overrightarrow a+2\overrightarrow b)⊥(2\overrightarrow a-\overrightarrow b)$,求向量$\overrightarrow a-\overrightarrow b$与$\overrightarrow b$的夹角.

查看答案和解析>>

同步练习册答案