精英家教网 > 高中数学 > 题目详情
2.函数f(x)=cosωx(ω>0)的图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,则ω的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$或$\frac{1}{2}$D.$\frac{2}{3}$或2

分析 根据对称中心得出ω的值,根据单调区间得出ω的范围.从而得出答案.

解答 解:∵f(x)图象关于($\frac{3π}{4}$,0)对称,
∴cos$\frac{3πω}{4}$=0,∴$\frac{3πω}{4}$=$\frac{π}{2}+kπ$,解得ω=$\frac{2}{3}$+$\frac{4k}{3}$,k∈Z.
令kπ≤ωx≤π+kπ,解得$\frac{kπ}{ω}$≤x≤$\frac{π}{ω}+\frac{kπ}{ω}$,
∴f(x)在[0,$\frac{π}{ω}$]上是单调减函数.
∵f(x)在[0,$\frac{π}{2}$]上单调,
∴$\frac{π}{2}≤\frac{π}{ω}$,解得ω≤2.
又∵ω>0,
∴ω=$\frac{2}{3}$或2.
故选:D.

点评 本题考查了余弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=3,an=an-1+$\frac{1}{n(n-1)}$(n≥2),求数列的通项式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知复数w满足w-4=(3-2w)i(i为虚数单位).
(1)求w;
(2)设z∈C,在复平面内求满足不等式1≤|z-w|≤2的点Z构成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若集合A={x|x2-4<0},集合B={x|x<0},则A∩B={x|-2<x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,f(x)=($\frac{1}{3}$)x-6.若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则实数a的取值范围是$({\root{3}{4},2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读如图的算法框图,输出的结果S的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.0D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=x3-3ax+1在区间(0,1)内有极小值,则a的取值范围是(  )
A.(0,1)B.(0,1]C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
优分非优分总计
男生9       21      30       
女生11920
总计203050
(ii)据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.
附:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等差数列{an}的公差为d,关于x的不等式${a_1}{x^2}+({\frac{d}{2}-{a_1}})x+c≥0$的解集为$[{\frac{1}{3},\frac{4}{5}}]$,则使数列{an}的前n项和Sn最小的正整数n的值为4.

查看答案和解析>>

同步练习册答案