分析 由递推公式可得an-an-1,由此利用累加法即可求得an,注意验证n=1时情况.
解答 解:因为a1=3,an=an-1+$\frac{1}{n(n-1)}$(n≥2),
所以an-an-1=$\frac{1}{n(n-1)}$,a2-a1=$1-\frac{1}{2}$,a3-a2=$\frac{1}{2}$-$\frac{1}{3}$,a4-a3=$\frac{1}{3}$-$\frac{1}{4}$,…,an-an-1=$\frac{1}{n-1}-\frac{1}{n}$,
把以上各式加起来,得an-a1=(1-)+($\frac{1}{2}\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)=1-$\frac{1}{n}$(n≥2),
所以an=2-$\frac{1}{n}$(n≥2),
当n=1时,a1=3不适合上式,
所以an=$\left\{\begin{array}{l}{3,n=1}\\{2-\frac{1}{n},n≥2,n∈{N}^{•}}\end{array}\right.$
点评 本题考查由数列递推公式求数列通项公式,已知形如an+1-an=f(n)求an,常用累加法解决.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 语言表达能力 人数 逻辑思维能力 | 一般 | 良好 | 优秀 |
| 一般 | 2 | 2 | 1 |
| 良好 | 4 | m | 1 |
| 优秀 | 1 | 3 | n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩(∁UN)=∅ | B. | M∩N=N | C. | M∪N=U | D. | M⊆(∁UN) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π-2}{4}$ | B. | π-2 | C. | 2π-2 | D. | 4π-8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$或$\frac{1}{2}$ | D. | $\frac{2}{3}$或2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com